Effect of Metashaleas SCM on Mechanical and Thermal Properties in Concrete Production

Article Preview

Abstract:

This article is focused on SCM questions. Studied material - metashale belongs among artificial pozzolana with natural origin. Shale is clay mineral and by its burning at 700°C similar material as metakaolin arises. Metashale is used as cement replacement up to 60% in concrete production. By means of measurement of basic physical properties, mechanical strength and thermal characteristic the effect of metashale is determined. Concrete containing 20% of metashale shows improvement of studied properties except of thermal conductivity. The 40% of the SCM leads to concrete production with same properties as the reference concrete. And when 60% of the burnt clay is utilized, final values of studied properties shows little deteriorations. However all studied materials shows appropriate properties to be applicable in civil engineering branch as load-bearing concrete.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

41-46

Citation:

Online since:

May 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. Lothenbach, K. Scrivener, R.D. Hooton: Supplementary cementitious materials; Cement and Concrete Research, 41 (2011) 1244-1256.

DOI: 10.1016/j.cemconres.2010.12.001

Google Scholar

[2] Karen L. Scrivener, André Nonat: Hydration of cementitious materials, present and future; Cement and Concrete Research, 41 (2011) 651-665.

DOI: 10.1016/j.cemconres.2011.03.026

Google Scholar

[3] E. Vejmelková, M. Pavlíková, M. Keppert, Z. Keršner, P. Rovnaníková, M. Ondráček, M. Sedlmajer, R. Černý: Fly-Ash Influence on the Properties of High Performance Concrete; Cement WapnoBeton 13/75, (2009) 189-204.

DOI: 10.1016/j.conbuildmat.2010.01.017

Google Scholar

[4] T. K. Erdem, G. Tayfur, Ö. Kirca: Experimental and modelling study of strength of high strength concrete containing binary and ternary binders; Cement WapnoBeton 16/78, April 2011, Pages 224-237.

Google Scholar

[5] E. Vejmelková, M. Keppert, S. Grzeszczyk, B. Skaliński, R. Černý: Properties of Self-Compacting Concrete Mixtures Containing Metakaolin and Blast Furnace Slag. Construction and Building Materials, Volume 25, Issue 3, March 2011, Pages 1325-1331.

DOI: 10.1016/j.conbuildmat.2010.09.012

Google Scholar

[6] Franco Massazza: 10 - Pozzolana and PozzolanicCemen, Lea's Chemistry of Cement and Concrete (Fourth Edition), 2003, Pages 471-635.

Google Scholar

[7] Máca, P., Jandeková, D., Konvalinka, P.: The influence of metakaolin addition on the scaling of concrete due to frost action; Cement WapnoBeton, 19 (2014) 1-7.

Google Scholar

[8] Máca, P., Jandeková, D., Sovják, R., Konvalinka, P.: Increasing concrete resistance to deicing chemicals by using metakaolin; Life-Cycle and Sustainability of Civil Infrastructure Systems, CRC Press/Balkema, Leiden, (2012) 1348-1352.

Google Scholar

[9] Konvalinka, P., Litoš, J., Jandeková, D.: Volume Changes of Cement Pastes Using Metakaolin; Proceedings of the 50th Annual Conference on Experimental Stress Analysis, Czech Technical University in Prague, Praha, (2012) 211-216.

Google Scholar

[10] Reiterman, P., Keppert, M., Čáchová, M., Holčapek, O., Vogel, F., Kolář, K. &Konvalinka, P.: Permeability and basic physical properties of concrete with metakaolin addition; Experimental Stress Analysis 51, Trans Tech Publications, Uetikon-Zurich, (2014).

DOI: 10.4028/www.scientific.net/amm.486.313

Google Scholar

[11] E. Vejmelková, M. Pavlíková, M. Keppert, Z. Keršner, P. Rovnaníková, M. Ondráček, M. Sedlmajer, R. Černý, High Performance Concrete with Czech Metakaolin: Experimental Analysis of Strength, Toughness and Durability Characteristics. Construction and Building Materials 24(2010).

DOI: 10.1016/j.conbuildmat.2010.01.017

Google Scholar

[12] Holčapek, O., Reiterman, P., Konvalinka, P., High temperature composite of aluminous cement with addition of metakaolin and ground bricks dust; Applied Mechanics and Materials, 486 (2014) 406-411.

DOI: 10.4028/www.scientific.net/amm.486.406

Google Scholar

[13] [Product data sheet: Mefisto L05, Českélupkovézávody, a. s. ©(2013).

Google Scholar

[14] Roels, S., Carmeliet. J., Hens. H., Adan. O., Brocken, H., Černý, R., Pavlík, Z., Hall, C., Kumaran, K., Pel, L., Plagge, R. Interlaboratory Comparison of Hygric Properties of Porous Building Materials, Journal of Thermal Envelope and Building Science 27 (2004).

DOI: 10.1177/1097196304042119

Google Scholar

[15] ČSN EN 1015-11: Methods of test for mortar for masonry - Part 11: Determination of flexural and compressive strentgth of hardened mortar, Prague, Czech Standardization Institute, (2000).

DOI: 10.3403/01905442

Google Scholar

[16] Applied Precision - ISOMET. [User manual], Bratislava (1999).

Google Scholar