[1]
E. P. Carden and P. Fanning: Vibration based conditioning Monitoring: A review, Structural Health Monitoring, Vol. 3(2004), pp.355-377.
DOI: 10.1177/1475921704047500
Google Scholar
[2]
D. Montalvao, N. Maia and A. Ribeiro: A review of vibration-based structural health monitoring with special emphasis on composite materials, Shock and Vibration Digest, Vol. 38 (2006), p.295–324.
DOI: 10.1177/0583102406065898
Google Scholar
[3]
R. D. Adams, P. Cawley, C. J. Pye and B. J. Stone: A vibration technique for non-destructively assessing the integrity of structures. Journal of Mechanical Engineering Science, Vol. 20(1978), pp.93-100.
DOI: 10.1243/jmes_jour_1978_020_016_02
Google Scholar
[4]
P. Cawley and R. D. Adams: The location of defects in structures from measurements of natural frequencies. Journal of Strain Analysis, Vol. 14(1979), pp.49-57.
DOI: 10.1243/03093247v142049
Google Scholar
[5]
O. S. Salawu: Detection of Structural Damage Through Changes in Frequency: A Review, Engineering Structures, Vol. 19(1997), pp.718-723.
DOI: 10.1016/s0141-0296(96)00149-6
Google Scholar
[6]
S. Alampalli, G. Fu and E. W. Dillon: Signal versus noise in damage detection by experimental modal analysis. Journal of Structural Engineering, Vol. 123(1997), p.237–245.
DOI: 10.1061/(asce)0733-9445(1997)123:2(237)
Google Scholar
[7]
N. A. J. Lieven and D. J. Ewins: Spatial correlation of modespaces: the coordinate modal assurance criterion (COMAC). In: Proceedings of the 6th International Modal Analysis Conference, Kissimmee, Florida, USA, (1988), p.1063–1070.
Google Scholar
[8]
R. L. Allemang and D. L. Brown: A correlation coefficient for modal vector analysis. in Proc. of the 1st International Modal Analysis Conference. Orlando, Florida, USA, (1983), pp.110-116.
Google Scholar
[9]
J. He and D. J. Ewins: Analytical Stiffness Matrix Correction Using Measured Vibration Modes, Modal Analysis: The International Journal of Analytical and Experimental Modal Analysis, Vol. 1(1986), p.9–14.
Google Scholar
[10]
O. S. Salawu and C. Williams: Structural Damage Detection Using Experimental Modal Analysis–A Comparison Of Some Methods, in Proc. of 11th International Modal Analysis Conference, (1993), p.254–260.
Google Scholar
[11]
L. D. Peterson, K. F. Alvin, S. W. Doebling and K. C. Park: Damage Detection Using Experimentally Measured Mass And Stiffness Matrices, in Proc. of 34th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA-93-1482-CP(1993).
DOI: 10.2514/6.1993-1482
Google Scholar
[12]
A. K. Pandey and M. Biswas: Damage detection in structures using changes in flexibility. J. Sound Vib., Vol. 169(1994), p.3–17.
Google Scholar
[13]
D. Bernal: Load vectors for damage localization. J. Eng. Mech., Vol. 128(2002), p.7–14.
Google Scholar
[14]
R. P. C. Sampaio, N. M. M. Maia and J. M. M. Silva: Damage detection using the frequency response function curvature method. Journal of Sound and Vibration, Vol. 226(1999), p.1029–1042.
DOI: 10.1006/jsvi.1999.2340
Google Scholar
[15]
U. Lee and J. Shin: A frequency response function-based structural damage identification method. Computers and Structures, Vol. 80(2002), p.117–132.
DOI: 10.1016/s0045-7949(01)00170-5
Google Scholar
[16]
J. Leuridan: Some direct parameter model identification methods applicable for multiple modal analysis, PhD Thesis, University of Cincinnati(1984).
Google Scholar
[17]
C. S. Huang: Structural identification from ambient vibration measurement using the multivariate AR model. Journal of Sound and Vibration, Vol. 241(2001), p.337–359.
DOI: 10.1006/jsvi.2000.3302
Google Scholar
[18]
J. W. Tedesco, W. G. McDougal and C. A. Ross, Structural dynamics: Theory and applications, Addison-Wesley, Menlo Park, Calif. (1999).
Google Scholar