Image Quality Improvement with Liquid Field Lens Scheme in 9x Zoom Lens Intermediate Optics

Article Preview

Abstract:

This paper proposes compensation method with liquid lens as field lens in 9x zoom lens intermediate optics. According to the droplet shape and location of liquid lens which can adjust reversibly to tune the focal length and position of the lens by changing the applied voltage on the set of electrodes and hence the liquid lens can replace more lens to reduce total length size of opto-mechanics system. In the proposed field lens scheme, we use CODE V built-in optimal method to find the best liquid lens parameter versus difference zoom of intermediate optics. There are several general optical aberrations taking into consideration. Comparing with original 9x intermediate optics without field lens technology, the maximum the spherical aberration (SA), the tangential coma (TCO), the tangential astigmatism (TAS), the transverse chromatic aberration (TCA) and the petzval surface curvature (PTZ), and modulation transfer function (MTF) improved by 42.8%, 87.5%, 92.5%, 77.8%, 9.06% and 2877%.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1245-1249

Citation:

Online since:

May 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Valley, D.M. Reza, J. Schwiegerling, G. Peyman and N. Peyghambarian: Opt. Lett. Vol. 35 (2010), p.2582.

DOI: 10.1364/ol.35.002582

Google Scholar

[2] M.N. Akram and M.H. Asghar: Appl. Opt. Vol. 42 (2003), p.2312.

Google Scholar

[3] Y.H. Lin, Y.L. Liu and G.D.J. Su: Applied Optics Vol. 51 (2012), p.1804.

Google Scholar

[4] G.I. Greisukh, E.G. Ezhov, A.V. Kalashnikov and S.A. Stepanov: Applied Optics Vol. 51 (2012), p.4597.

Google Scholar

[5] P.D. Lin and C.K. Sung: Optics Expres Vol. 15 (2007), p.3012.

Google Scholar

[6] M. Kawakita, K. Iizuka, R. Iwama, K. Takizawa, H. Kikuchi and F. Sato: Optics Express Vol. 12 (2004), p.5336.

DOI: 10.1364/opex.12.005336

Google Scholar

[7] S.W. Seo, S. Han, J.H. Seo, Y.M. Kim, M.S. Kang, N.G. Min, W.B. Choi, and M.Y. Sung: Proc. SPIE Vol. 6931 (2008) , p. 69310N1.

Google Scholar

[8] A. Mikš, J. Novák and P. Novák: Applied Optic Vol. 47 (2008), p.6088.

Google Scholar

[9] D.V. Wick, T. Martinez, D.M. Payne, W.C. Sweatt and S.R. Restaino: Proc. SPIE Vol. 5798 (2005), p.151.

Google Scholar

[10] T. Martinez, D.V. Wick, D.M. Payne, J.T. Baker and S.R. Restaino: Proc. SPIE Vol. 5234 (2004), p.375.

Google Scholar

[11] R.B. Johnson and C. Feng: Applied Optics 31 (1992), p.2274.

Google Scholar

[12] D.F. Kienholz: Applied Optics Vol. 9 (1970), p.1443.

Google Scholar

[13] C.M. Tsai, C.T. Yen, Y.C. Fang and C.A. Chen: Proc. SPIE Vol. 8841 (2013), p. 88410I.

Google Scholar

[14] L. Ren, S. Park, H. Ren and I.S. Yoo: Microelectro mechanical Systems Vol. 21 (2012), p.953.

Google Scholar

[15] J. Park, C.X. Liu and J. W Choi: Sensors, 2007 IEEE (2007), p.439.

Google Scholar

[16] Chapter 5 - Feild Lenses. http: /www. sk-advanced. com/category/chapter-5-feild-lenses.

Google Scholar

[17] Topic 43. The Field Lens. http: /www. colorado. edu/physics/phys1230/phys1230_fa01/topic43. html.

Google Scholar

[18] Varioptic S.A. Optical and Opto-Mechanic Data, , www. varioptic. com.

Google Scholar