RFID-Based Thermal Convection Non-Floating Type Accelerometer with Stacking Material for Heater and Thermal Sensors

Article Preview

Abstract:

This research proposes a wireless non-floating type thermal convection accelerometer, in which the heaters and the thermal sensors were made on the surface of a flexible substrate with a stacking material (such as aluminum nitride with thickness 1mm), this new device is different from those of the traditional floating structures with a grooved chamber in the silicon substrate. Thus one can integrate both a thermal convection accelerometer and a wireless RFID antenna on the same substrate, and this accelerometer is a wireless one and very convenient for fabrication and usage. Besides, the filling gas was changed as xenon to avoid the oxidizing effect that will be produced by the previously used CO2 or air. Thus not only the reliability but the life cycle of the heater can be increased. The performances by using the traditional rectangular chamber for either xenon or CO2 without stacking material had nonlinear effects. But the cases by using a stacking layer and xenon gas are always better. Comparisons with the previous accelerometer with rectangular chamber, stacking material and filled by CO2 are also made (with sensitivity 0.182°C/G), the sensitivity for the new one with hemi-cylindrical chamber, xenon gas and stacking material is better (0.227°C/G) and without nonlinear effect in larger accelerations. The new device can be used in the applications of air bags and munition industry.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1344-1348

Citation:

Online since:

May 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. Alain, R. Alain, V. Bernard and G. Alain, European Patent EP 1, 550, 874. (2010).

Google Scholar

[2] J. Bahari and A. M. Leung: J. Micromech. Microeng Vol. 21 (2011), p.1.

Google Scholar

[3] J. Courteaud, N. Crespy, P. Combette, B. Sorli and A. Giani: Sens. Actuators A: Physical Vol. 147 (2008), p.75.

DOI: 10.1016/j.sna.2008.03.015

Google Scholar

[4] R. Dao, D.E. Morgan, H.H. Kries and D.M. Bachelder, U.S. Patent 5, 581, 034. (1996).

Google Scholar

[5] U.A. Dauderstadt, P.H.S. de Vries, R. Hiratsuka, J.G. Korvink, P.M. Sarro, H. Baltes and S. Middelhoek: Sensors and Actuators A: Physical Vol. 55 (1996), p.3.

DOI: 10.1016/s0924-4247(96)01241-1

Google Scholar

[6] U.A. Dauderstadt, P.M. Sarro and P.J. French: Solid State Sensors and Actuators Vol. 66 (2008), p.244.

Google Scholar

[7] J. Dido, P. Loisel and A. Renault, U.S. Patent 7, 426, 862. B2. (2008).

Google Scholar

[8] A. Dribinsky, G.P. Pucci, Y. Cai, M. Varghese, G.J. O'Brien, Y. Zhao and Y.Y. Cai, U.S. Patent 7, 862, 229. (2011).

Google Scholar

[9] A. Garraud, A. Giani, P. Combette, B. Charlot and M. Richard: Sensors and Actuators A: Physical Vol. 170 (2011), p.44.

DOI: 10.1016/j.sna.2011.05.029

Google Scholar

[10] T.R. Hsu: In MEMS & microsystems: McGraw-Hill Companies, Inc (2002) Boston, USA.

Google Scholar

[11] F. Khoshnoud and C.W. de Silva : IEEE Instrumentation & Measurement Magazine Vol. 15 (2012), p.14.

Google Scholar

[12] S. Kobayashi, Y. Watanabe, S. Kanauchi, I. Nakagawa, E. Suganurna and M. Esashi: The 8th International Conference on Solid-State Sensors and Actuators Vol. 2 (1995), p.554.

DOI: 10.1109/sensor.1995.721891

Google Scholar

[13] K.M. Liao, R. Chen and B.C.S. Chou: Sensors and Actuators A: Physical Vol. 130-131 (2006), p.282.

Google Scholar

[14] J.M. Lin and C.H. Lin: 2013 International Conference on Computer, Networks and Communication Engineering, Beijing, China (2013), p.569.

Google Scholar

[15] L. Lin, R.T. Howe and A.P. Pisano: IEEE Journal of Microelectromechanical Systems Vol. 7 (1998), p.286.

Google Scholar

[16] X.B. Luo, Z.X. Li, Z.Y. Guo and Y.J. Yang : Journal of Micromechanics and Microengineering Vol. 11 (2001), p.504.

Google Scholar

[17] F. Peluso, D. Castagnolo and C. Albanese: Microgravity Sci. Technol Vol. 13 (2002), p.41.

Google Scholar

[18] A. Petropoulosa, A. Moschosa, S. Athineosa, and G. Kaltsas: Procedia Engineering Vol. 25 (2011), p.643.

Google Scholar

[19] G. Piazza and P. Stephanou: University of California Berkeley (2002).

Google Scholar

[20] A.A. Rekik, F. Azaïs, N. Dumas, F. Mailly and P. Nouet: Journal of Electronic Testing Vol. 27 (2011), p.411.

Google Scholar

[21] L.C. Spangler and C.J. Kemp: Sensors and Actuators A: Physical. Vol. 54 (1996), p.523.

Google Scholar

[22] Y. Zhao, A.P. Brokaw, M.E. Rebeschini, A.M. Leung, G.P. Pucci and A. Dribinsky: U.S. Patent 6, 795, 752 B1. (2004).

Google Scholar

[23] Y. Zhao, A. Leung, M.E. Rebeschini, G.P. Pucci, Dribinsky and B.A.Y. Cai: U.S. Patent 7, 305, 881 B2. (2007).

Google Scholar