Modelling of Texture Evolution in High Pressure Torsion by Crystal Plasticity Finite Element Method

Article Preview

Abstract:

In this study, texture evolution during high pressure torsion (HPT) of aluminum single crystal is predicted by the crystal plasticity finite element method (CPFEM) model integrating the crystal plasticity constitutive theory with Bassani & Wu hardening model. It has been found by the simulation that, during the HPT process, the lattice rotates mainly around the radial direction of the sample. With increasing HPT deformation, the initial cube orientation rotates progressively to the rotated cube orientation, and then to the C component of ideal torsion texture which could be remained over a wide strain range. Further HPT deformation leads to the orientation towards to the ideal texture component.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

56-60

Citation:

Online since:

May 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Azushima, R. Kopp, A. Korhonen, D.Y. Yang, et al.: CIRP Ann - Manuf Technol Vol. 57 (2008), p.716–35.

Google Scholar

[2] R. Pippan, S. Scheriau, A. Hohenwarter, M. Hafok: Mater. Sci. Forum Vol. 586 (2008), p.16.

DOI: 10.4028/www.scientific.net/msf.584-586.16

Google Scholar

[3] A. Zhilyaev, T.G. Langdon: Prog. Mater. Sci. Vol. 53 (2008), p.893.

Google Scholar

[4] T.G. Langdon: Acta Mater. Vol. 61 (2013), p.7035.

Google Scholar

[5] Y. Estrin, A. Vinogradov: Acta Mater. Vol. 61 (2013), p.782.

Google Scholar

[6] H.S. Kim: J. Mater. Process Technol. Vol. 113 (2001), p.617.

Google Scholar

[7] H.S. Kim, S.I. Hong, Y.S. Lee, A.A. Dubravina, I.V. Alexandrov: J. Mater. Process Technol. Vol. 142 (2003), p.334.

Google Scholar

[8] A. Rosochowski, L. Olejnik: Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. Vol. 221 (2007) , p.187.

Google Scholar

[9] R. Lapovok, A. Pougis, V. Lemiale, D. Orlov, L.S. Toth, Y. Estrin: J Mater Sci. Vol. 45 (2010), p.4554.

DOI: 10.1007/s10853-010-4403-x

Google Scholar

[10] R.B. Figueiredo, P.R. Cetlin, T.G. Langdon: Mater Sci Eng A. Vol. 528 (2011), p.8198.

Google Scholar

[11] R.B. Figueiredo, MTP Aguilar, P.R. Cetlin, T.G. Langdon: J Mater Sci. Vol. 47 (2012), p.7807.

Google Scholar

[12] P. T Wei, C. Lu, K. Tieu, G.Y. Deng, H. Wang, N. Kong: Steel Res Int. Vol. 84 (2013) , p.1246.

Google Scholar

[13] M. Hafok, R. Pippan: Philos. Mag. Vol. 88 (2008), p.1857.

Google Scholar

[14] J. Kratochvil, M. Kruzik, R. Sedlacek: Acta Mater. Vol. 57 (2009), p.739.

Google Scholar

[15] A. Draï, B. Aour: Eng Struct. Vol. 46 (2013), p.87.

Google Scholar

[16] R.J. Asaro: J Appl Phys. Vol. 50 (1983), p.921.

Google Scholar

[17] Y. Huang, A User-material subroutine incorporating single crystal plasticity in the ABAQUS finite element program. Mech report 178, Division of Engineering and Applied Sciences, Harvard University (1991).

Google Scholar

[18] J.L. Bassani, T.Y. Wu: Proc R Soc A Math Phys Eng Sci. Vol. 435 (1991), p.21.

Google Scholar

[19] K.S. Havner: Mech Mater. Vol. 1 (1982), p.97.

Google Scholar

[20] C. Lu, G.Y. Deng, A.K. Tieu, L.H. Su, H.T. Zhu, X.H. Liu: Acta Mater. Vol. 59 (2011), p.3581.

Google Scholar

[21] U.F. Kockss, J.J. Jonas: Acta Metall. Vol. 32 (1984), p.211.

Google Scholar

[22] F. Bachmann, R. Hielscher, H. Schaeben: Solid State Phenom. Vol. 160 (2010), p.63.

Google Scholar

[23] W. Skrotzki, L.S. Tóth, B. Klöden, H-G Brokmeier, R. Arruffat-Massion: Acta Mater. Vol. 56 (2008), p.3439.

DOI: 10.1016/j.actamat.2008.03.017

Google Scholar