[1]
T. Shimura,K. Takazawa,E. Hatano, Study of magnetic abrasive finishing, Annals of CIRP 39(1) (1990) 325-328.
DOI: 10.1016/s0007-8506(07)61064-6
Google Scholar
[2]
Y. Tani,K. Kawata, Development of high-efficient fine finshing process using magnetic fluid, Annals of CIRP 33 (1) (1984) 217-220.
DOI: 10.1016/s0007-8506(07)61412-7
Google Scholar
[3]
W. Korodonski, D. Golini, Progress update in magnetorheological finishing, International journal of Modern Physics B 13 (14-16) (1999) 2205-2212.
DOI: 10.1142/s0217979299002320
Google Scholar
[4]
L.J. Rhoads, Abrasive flow machining, Manufacturing Engineering, November (1988) 75-78.
Google Scholar
[5]
V.K. Jain S.G. Adsul, Experimental investigations into abrasive flow machining, International Journal of Machine Tool and Manufacture 40 (2001) 1003-1021.
DOI: 10.1016/s0890-6955(99)00114-5
Google Scholar
[6]
W.I. Korodonski, S.D. Jacobs, Magnetorheological finishing, International Journal of modern Physica B 10 (23, 24) (1996) 2837-2838.
Google Scholar
[7]
Jha Sunil, Jain V.K., Design and Development of Magnetorheological Abrasive Flow Finishing Process, International Journal of Machine tool and Manufacture, Volume 44, Issue 10 , August 2004, pages 1019-1029.
DOI: 10.1016/j.ijmachtools.2004.03.007
Google Scholar
[8]
Rainbow J., The Magnetic Fluid clutch, AIEE Trans. 67 (1948) 1308.
Google Scholar
[9]
Klingenberg D. J., Magnetorheology: Applications and challenges, AIChE Journal 47 (2) (2001) 246-249.
DOI: 10.1002/aic.690470202
Google Scholar
[10]
Azouzi, R., Guillot, M., 1999. On-line prediction of surface finish and dimensional deviations in turning using neural network based sensor fusion. Int. J. Mach. Tool Manuf. 37 (9), 1201–1217.
DOI: 10.1016/s0890-6955(97)00013-8
Google Scholar
[11]
Huang, J.T., Liao, Y.S., Hsue, W.J., 1999. Determination of finish –cutting operation number and machining – parameters settings in wire electrical discharge machining. J. Mater. Process. Technol. 87, 69–81.
DOI: 10.1016/s0924-0136(98)00334-3
Google Scholar
[12]
Jegaraj, J.J.R., Babu, N.R., 2007. A soft approach for controlling the quality of cut with abrasive waterjet cutting system experiencing orifice and focusing tube wear. J. Mater. Process. Technol. 185, 217–227.
DOI: 10.1016/j.jmatprotec.2006.03.124
Google Scholar
[13]
Ko, D.C., Kim, D.H., Kim, B.M., 1999. Application of neural network and Taguchi method to perform design in metal forming considering workability. Int. J. Mach. Tool. Manuf. 39, 771–785.
DOI: 10.1016/s0890-6955(98)00055-8
Google Scholar
[14]
Lee, B.Y., Liu, H.S., Tarng, Y.S., 1998. Modeling and optimization of drilling process. J. Mater. Process. Technol. 74, 149–157.
Google Scholar
[15]
Lin, B.T., Jean, M.D., Chou, J.H., 2007. Using response surface methodology for optimizing deposited partially stabilized zirkonia in plasma spraying. Appl. Surf. Sci. 253, 3254–3262.
DOI: 10.1016/j.apsusc.2006.07.021
Google Scholar
[16]
Liu, T.C., Li, R.K., Chen, M.C., 2006. Development of an artificial neural network to predict lead frame dimensions in an etching process. Int. J. Adv. Manuf. Technol. 27, 1211–1216.
DOI: 10.1007/s00170-004-2310-5
Google Scholar
[17]
Nalbant, M., G¨okkaya, H., Sur, G., 2007. Application of Taguchi method in the optimization of cutting parameters for surface roughness in turning. Mater. Des. 28, 1379–1385.
DOI: 10.1016/j.matdes.2006.01.008
Google Scholar
[18]
Ozc,elik, B., Oktem, H., Kurtaran, H., 2005. Optimum surface roughness in end milling Inconel 718 by coupling neural network model and genetic algorithm. Int. J. Adv. Manuf. Technol. 27, 234–241.
DOI: 10.1007/s00170-004-2175-7
Google Scholar
[19]
Ozel, T., Karpat, Y., 2005. Predictive modeling of surface roughness and tool wear in turning using regression and neural networks. Int. J. Mach. Tool Manuf. 45, 467–479.
DOI: 10.1016/j.ijmachtools.2004.09.007
Google Scholar
[20]
Singh, A.K., Panda, S.S., Pal, S.K., Chakraborty, D., 2006. Prediction drill wear using an artificial neural network. Int. J. Adv. Manuf. Technol. 28, 456–462.
DOI: 10.1007/s00170-004-2376-0
Google Scholar
[21]
Spedding, T.A., Wang, Z.Q., 1997. Study on modeling of wire EDM process. J. Mater. Process. Technol. 69, 18–28.
Google Scholar
[22]
Tosun, N., Cogun, C., 2003. An investigation on wire wear in WEDM. J. Mater. Process. Technol. 134, 273–278.
DOI: 10.1016/s0924-0136(02)01045-2
Google Scholar
[23]
Tosun, N., Ozler, L., 2002. A study of tool life in hot machining using artificial neural networks and regression analysis method. J. Mater. Process. Technol. 124, 99–104.
DOI: 10.1016/s0924-0136(02)00086-9
Google Scholar
[24]
Tsai, Chen, C., Lou, S.J., 1999. In in-process surface recognition system based on neural networks in end milling cutting operations. Int. J. Mach. Tool Manuf. 39, 583–605.
DOI: 10.1016/s0890-6955(98)00053-4
Google Scholar
[25]
http: /en. wikipedia. org/wiki/Neural network.
Google Scholar
[26]
http: /www. doc. ic. ac. uk/nd/surprise96/journal/vol4/csll/report. html.
Google Scholar