[1]
Rashmi W, Ismail A F, Sopyan I, Jameel A T, Yusof F, Khalid M and Mubarak N M, Stability and thermal conductivity enhancement of carbon nanotube nanofluid using gum arabic J. Exp. Nanosci. V o l . 6, 2 0 1 1 , 567–79.
DOI: 10.1080/17458080.2010.487229
Google Scholar
[2]
W Rashmi, M Khalid, S S Ong and R Saidur, Preparation, thermo-physical properties and heat transfer enhancement of nanofluids, Materials Research Express Vol. 1, Issue 3, (2014).
DOI: 10.1088/2053-1591/1/3/032001
Google Scholar
[3]
J.A. Eastman, S.U.S. Choi, S. Li, W. Yu, L.J. Thompson, Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles, Applied Physics Letters 78 (6) (2001) 718-720.
DOI: 10.1063/1.1341218
Google Scholar
[4]
Choi S. Nanofluids for improved efficiency in cooling systems. In: Heavy vehicle systems review. Argonne National Laboratory; April 18–20, (2006).
Google Scholar
[5]
Choi C, Yoo HS, Oh JM. Preparation and heat transfer properties of nanoparticle-in- transformer oil dispersions as advanced energy efficient coolants,. Curr Appl Phys 2008; 8: 710–2.
DOI: 10.1016/j.cap.2007.04.060
Google Scholar
[6]
Tzeng SC, Lin CW, Huang KD, Heat transfer enhancement of nanofluids in rotary blade coupling of four-wheel-drive vehicles. Acta Mech 2005; 179(1–2): 11–23.
DOI: 10.1007/s00707-005-0248-9
Google Scholar
[7]
W. Yu, H. Xie, L. Chen, Y. Li, Investigation of thermal conductivity and viscosity of ethylene glycol based ZnO nanofluid, Thermochimica Act a 491 (1-2) (2009) 92-96.
DOI: 10.1016/j.tca.2009.03.007
Google Scholar
[8]
H.A. Mintsa, G. Roy, C.T. Nguyen, D. Doucet, New temperature dependent thermal conductivity data for water-based nanofluids, International Journal of Thermal Sciences 48 (2) (2009) 363-371.
DOI: 10.1016/j.ijthermalsci.2008.03.009
Google Scholar
[9]
W. Yu, D.M. France, D.S. Smith, D. Singh, E.V. Timofeeva, J.L. Routbort, Heat transfer to a silicon carbide/water nanofluid, International Journal of Heat and Mass Transfer 52 (15-16) (2009) 3606-3612.
DOI: 10.1016/j.ijheatmasstransfer.2009.02.036
Google Scholar
[10]
Rahul A. Bhogare, B. S. Kothawale, A Review on applications and challenges of Nano-fluids as coolant in Automobile Radiator, International Journal of Scientific and Research Publications, Volume 3, Issue 8, August 2013, ISSN 2250-3153.
Google Scholar
[11]
Singh D., Toutbort J., Chen G.; Heavy vehicle systems optimization merit review and peer evaluation, Annual Report, Argonne National Laboratory, (2006).
Google Scholar
[12]
Y. Hwang, J.K. Lee, C.H. Lee, Y.M. Jung, S.I. Cheong, C.G. Lee, Stability and thermal conductivity characteristics of nanoflu ids, Thermochimica Acta 455 (1-2) (2007) 70-74.
DOI: 10.1016/j.tca.2006.11.036
Google Scholar
[13]
Wilson CA, Experimental investigation on nanofluid oscillating heat pipes. MS thesis, Columbia: University of Missouri: (2006).
Google Scholar
[14]
Paresh Machhar, Falgun Adroja, Heat Transfer Enhancement of Automobile Radiator with TiO2/Water Nanofluid, International Journal of Engineering Research & Technology (IJERT), Vol. 2, Issue 5, May 2013, ISSN: 2278-0181.
Google Scholar
[15]
J. -H. Lee, K.S. Hwang, S.P. Jang, B.H. Lee, J.H. Kim, S.U.S. Choi, Effective viscosities and thermal conductivities of aqueous nanofluids containing low volume concentrations of Al2O3 nanoparticles, International Journal of Heat and Mass Transfer 51 (11-12) (2008).
DOI: 10.1016/j.ijheatmasstransfer.2007.10.026
Google Scholar
[16]
C.T. Nguyen, G. Roy, C. Gauthier, N. Galanis, Heat transfer enhancement using Al2O3 Al2O3/ water nanofluid for an electronic liquid cooling system, Applied Thermal Engineering 27 (2007) 1501-1506.
DOI: 10.1016/j.applthermaleng.2006.09.028
Google Scholar
[17]
P.K. Namburu, D.K. Das, K.M. Tanguturi, R.S. Vajjha, Numerical study of turbulent flow and heat transfer characteristics of nanofluids considering variable properties, International Journal of Thermal Sciences 48 (2) (2009) 290-302.
DOI: 10.1016/j.ijthermalsci.2008.01.001
Google Scholar
[18]
Y. Ding, H. Chen, Y. He, A. Lapkin, M. Yeganeh, L. Siller, Forced convective heat transfer of nanofluids, Advanced Powder Technology 18 (6) (2007) 813-824.
DOI: 10.1163/156855207782515021
Google Scholar
[19]
H.S. Zeinali, M. Nasr Esfahany, S.G. Etemad, Experimental investigation of convective heat transfer of Al2O3/water nanofluid in circular tube, International Journal of Heat and Fluid Flow 28 (2) (2007) 203-210.
DOI: 10.1016/j.ijheatfluidflow.2006.05.001
Google Scholar
[20]
D. Kim, Y. Kwon, Y. Cho, C. Li, S. Cheong, Y. Hwang, Convective heat transfer characteristics of nanofluids under laminar and turbulent flow conditions, Current Applied Physics 9 (2) (2009) e119e-e123.
DOI: 10.1016/j.cap.2008.12.047
Google Scholar
[21]
B.C. Pak, I.Y. Cho, Hydrodynamic and heat transfer study of dispersed fluids with sub-micron metallic oxide particles, Experimental Heat Transfer 11 (1998) 151-170.
DOI: 10.1080/08916159808946559
Google Scholar
[22]
D. Wen, Y. Ding, Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions, International Journal of Heat and Mass Transfer 47 (2004) 5181-5188.
DOI: 10.1016/j.ijheatmasstransfer.2004.07.012
Google Scholar
[23]
S.Z. Heris, S. Gh. Etemad, M. Nasr Esfahany, Experimental investigation of oxide nanofluids laminar flow convective heat transfer, International Communications in Heat and Mass Transfer 33 (4) (2006) 529-535.
DOI: 10.1016/j.icheatmasstransfer.2006.01.005
Google Scholar
[24]
W.Y. Lai, B. Duculescu, P.E. Phelan, R.S. Prasher, Convective heat transfer with nanofluids in a single 1. 02-mm tube, Proceedings of ASME International Mechanical Engineering Congress and Exposition (IMECE2006) (2006).
DOI: 10.1115/imece2006-14132
Google Scholar
[25]
J.Y. Jung, H.S. Oh, H.Y. Kwak, Forced convective heat transfer of nanofluids in micro channels, Proceeding of ASME International Mechanical Engineering Congress and Exposition (IMECE 2006) (2006).
DOI: 10.1115/imece2006-13851
Google Scholar
[26]
K.V. Sharma, L. Syam Sundar, P.K. Sarma, Estimation of heat transfer coefficient and friction factor in the transition flow with low volume concentration of Al2O3 nanofluid flowing in a circular tube and with twisted tape insert, International Communications in Heat and Mass Transfer 36 (2009).
DOI: 10.1016/j.icheatmasstransfer.2009.02.011
Google Scholar
[27]
C.J. Ho, L.C. Wei, Z.W. Li, An experimental investigation of forced convective cooling performance of a micro channel heat sink with Al2O3/water nanofluid, Applied Thermal Engineering 30 (2009) 96-103.
DOI: 10.1016/j.applthermaleng.2009.07.003
Google Scholar
[28]
Y. He, et al., Heat transfer and flow behavior of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe, International Journal of Heat and Mass Transfer 50 (2007) 2272–2281.
DOI: 10.1016/j.ijheatmasstransfer.2006.10.024
Google Scholar
[29]
W. Duangthongsuk, S. Wongwises, Heat transfer enhancement and pressure drop characteristics of TiO2-water nanofluid in a double-tube counter flow heat exchanger, International Journal of Heat and Mass Transfer, 52 (2009) 2059–(2067).
DOI: 10.1016/j.ijheatmasstransfer.2008.10.023
Google Scholar
[30]
W. Duangthongsuk, S. Wongwises, An experimental study on the heat transfer performance and pressure drop of TiO2-water nanofluids flowing under a turbulent flow regime, International Journal of Heat and Mass Transfer 53 (2010) 334–344.
DOI: 10.1016/j.ijheatmasstransfer.2009.09.024
Google Scholar
[31]
Ollivier E, Bellettre J, Tazerout M, Roy GC. Detection of knock occurrence in a gas SI engine from a heat transfer analysis. Energy Convers Manage 2006; 47(7–8): 879–93.
DOI: 10.1016/j.enconman.2005.06.019
Google Scholar