Tensile and Flexural Properties of Glass Fibre Reinforced Nano Polymer Composite Panels

Article Preview

Abstract:

This paper investigates the effect of nanoclay content on glass fibre reinforced polymer (GFRP) composites under tensile and flexural loading. Four different combinations of GFRP composite panels made of fiber glass/nanomodified polyester resin have been prepared by hand lay-up manufacturing technique (HL). Composite samples are tested for tensile and flexural properties. Scanning Electron Microscopy (SEM) has given morphological picture of the FRP fracture samples. The results showed that the tensile and flexural strength is greatly increased over the range of nanoclay loading by about 23% and 40% respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

372-376

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Usuki, M. Kawasumi, Y. Kojina, A. Okada, T. Kurauchi, O. Kamigaito, Swelling behavior of montmorillonite cation exchanged for v-aminoacid by e-caprolactam, J. Mater. Res. 8 (1993) 1174–1178.

DOI: 10.1557/jmr.1993.1174

Google Scholar

[2] A. Usuki, Y. Kojima, M. Kawasumi, A. Okada, Y. Fukushima, T. Kurauchi,O. Kamigaito, Synthesis of nylon 6 – clay hybrid, J. Mater. Res. 8 (1993) 1179–1184.

DOI: 10.1557/jmr.1993.1179

Google Scholar

[3] X. Kornmann, H. Lindberg, L.A. Berglund, Synthesis of epoxy–clay nanocomposites: influence of the nature of the clay on structure, Polymer 42 (2001) 1303–1310.

DOI: 10.1016/s0032-3861(00)00346-3

Google Scholar

[4] M. Krook, A.C. Albertson, U.W. Gedde, M.S. Hedenqvist, Barrier and mechanical properties of montmorillonite/polyester amide nanocomposites, Polym. Eng. Sci. 42 (2002) 1238–1246.

DOI: 10.1002/pen.11027

Google Scholar

[5] D.M. Delozier, R.A. Orwoll, J.F. Cahoon, J.S. Ladislaw, J.G. Smith Jr., J.W. Connell, Polyimide nanocomposites prepared from high-temperature, reduced charge organoclays, Polymer 44 (2003) 2231–2241.

DOI: 10.1016/s0032-3861(03)00082-x

Google Scholar

[6] B.K. Kim, J.W. Seo, H.M. Jeong, Morphology and properties of waterborne polyurethane/clay nanocomposites, Eur. Polym. J. 39 (2003) 85–91.

DOI: 10.1016/s0014-3057(02)00173-8

Google Scholar

[7] A. Usuki, M. Kato, A. Okada, T. Kurauchi, Synthesis of polypropylene–clay hybrid, J. Appl. Polym. Sci. 63 (1997) 137–138.

DOI: 10.1002/(sici)1097-4628(19970103)63:1<137::aid-app15>3.0.co;2-2

Google Scholar

[8] Levent Aktas, M. Cengiz Altan, 2009, Characterization of Nanocomposite Laminates Fabricated from Aqueous Dispersion of Nanoclay, Society of Plastics Engineers.

DOI: 10.1002/pc.20837

Google Scholar

[9] Davallo. M, Pasdar. H, Mohseni. M, 2010, Mechanical Properties of Unsaturated Polyester Resin, International Journal of chem. Tech Research, 2, pp.2113-2117.

Google Scholar

[10] Velmurugan. R, Manikandan. V, 2005, Mechanical properties of glass/pylmyara fiber waste sandwich composites, Indian journal of engg. &Material science, 12, pp.563-570.

Google Scholar

[11] XU Fang , SHEN Shangyue, ZHANG Suxin Jing , Preparation of Organic Montmorillonite and mechanical Properties of Montmorillonite/Unsaturated Polyester Composites, Journal of Wuhan University of Technology - Mater. Sci. Ed. 20(2005) 107-109.

DOI: 10.1007/bf02841297

Google Scholar

[12] B. Lepoittevin, N. Egepantoustier, M.D. Ckenaeve, M. Alexandre, C. Calberg, R. Jerome, C. Henrist, A. Rulmont, P. Dubois, polymers/layered silicate nanocomposites by combined intercalative polymerization and melt intercalation: a master batch process, Polymer 44 (2003).

DOI: 10.1016/s0032-3861(03)00076-4

Google Scholar

[13] R.K. Bharadwaj, A.R. Mehrabi, C. Hamilton, C. Tujillo, M. Murga, R. Fan, A. Chavira, A.K. Thompson, Structure–property relationships in cross-linked polyester–clay nanocomposites, Polymer 43 (2002) 3699–3705.

DOI: 10.1016/s0032-3861(02)00187-8

Google Scholar

[14] M. Abareshi, S. M. Zebarjad, and E. K. Goharshadi Crystallinity Behavior of MDPE Clay Nanocomposites Fabricated using Ball Milling Method , Journal of Composite materials, 43 (2009) 2821-2830.

DOI: 10.1177/0021998309345307

Google Scholar

[15] Uday Konwar, Niranjan Karak, Mesuaferrea L. Seed Oil Based Highly branched Environment Friendly Polyester Resin/Clay Nanocomposites, J Polym Environ (2010).

DOI: 10.1007/s10924-010-0242-8

Google Scholar

[16] Pradip K. Maji Prasanta K. Guchhait Anil K. Bhowmick, Effect of nanoclays on physico-mechanical properties and adhesion of polyester-based polyurethane nanocomposites: structure–property correlations J Mater Sci 44 (2009) 5861–5871.

DOI: 10.1007/s10853-009-3827-7

Google Scholar

[17] Subramanian AK, Bing Q, Nakima D, Sun CT (2003) In: CD Proceedings of the 18th Annual Technical Conference of American Society for Composites, Gainesville, FL, Paper 194.

Google Scholar

[18] Mohan RV, Kelkar AD, Akinyede O (2005) In: CD Proceedings of 50th SAMPE Symposium and Exposition, Long Beach, CA, Paper 279.

Google Scholar