[1]
Wu. G. and Yang, J.M., The mechanical behavior of GLARE laminates for aircraft structures, JOM, 2005, p.72 – 79.
DOI: 10.1007/s11837-005-0067-4
Google Scholar
[2]
Vlot, A., Vogelesang, L. B., De Vries, T. J., Towards Application of Fiber Metal Laminates in Large Aircraft, Aircraft Engineering and Aerospace Technology, Vol. 71, No. 6, 1999, pp.558-570.
DOI: 10.1108/00022669910303711
Google Scholar
[3]
Vogelesang, L. B., Vlot, A., Development of Fiber Metal Laminates for Advanced Aerospace Structures, Material Processes Technology, Vol. 103, 2000, pp.1-5.
DOI: 10.1016/s0924-0136(00)00411-8
Google Scholar
[4]
A. Vlot., Impact properties of fiber-metal laminates, Composite Engineering, 3, (1993), 911-27.
Google Scholar
[5]
Hoo Fatt M. S., Lin C., D. M. Revilock Jr, D. A. Hopkins, Ballistic impact of Glare fiber-metal laminates, Composite Structures, 61, (2003), 73-88.
DOI: 10.1016/j.compstruct.2009.08.023
Google Scholar
[6]
M. Sadighi, R. C. Alderliesten, R. Benedictus, Impact resistance of fiber-metal laminates: a review, International Journal of Impact Engineering., 48, (2012), 77-90.
DOI: 10.1016/j.ijimpeng.2012.05.006
Google Scholar
[7]
Alderliesten RC, Benedictus R, Fiber/metal composite technology for future primary aircraft structures. In: 48th AIAA/ASME/ASCE/AHS/ASC structures, Structural Dynamics, and Materials Conference 15th; April 23–26, 2007; Honolulu, Hawaii; 2007. p.1.
DOI: 10.2514/6.2007-2404
Google Scholar
[8]
P. Mathivanan, M. Balakrishnan and H. Krishnan, Metal Thickness, Fiber Volume Fraction Effect on the Tensile Properties, Debonding of Hybrid Laminates, Journal of Reinforced Plastics and Composites, 2010, 29, pp.2128-2140.
DOI: 10.1177/0731684409345616
Google Scholar
[9]
Asundi, A. and Choi, Y. N., Fiber Metal Laminates: An Advanced Material for Future Aircraft, Journal of Material Processing Technology, (1997), 63: 384-394.
DOI: 10.1016/s0924-0136(96)02652-0
Google Scholar
[10]
Edson Cocchieri Botelhoa, Rogério Almeida Silvac, Luiz Cláudio Pardinia, Mirabel Cerqueira Rezendea, A Review on the Development and Properties of Continuous Fiber/epoxy/aluminum Hybrid Composites for Aircraft Structures, Materials Research, Vol. 9, No. 3, 2006, 247-256.
DOI: 10.1590/s1516-14392006000300002
Google Scholar
[11]
Sang Yoon Parka, Won Jong Choia, Heung Soap Choib, Hyuk Kona, Effects of surface pre-treatment and void content on GLARE laminate process characteristics, Journal of Materials Processing Technology, 210 (2010): p.1008–1016.
DOI: 10.1016/j.jmatprotec.2010.01.017
Google Scholar
[12]
Mahesh M, Senthil Kumar A, Comparison of Mechanical Properties for Aluminium Metal Laminates (GLARE) of three different orientations such as CSM, Woven Roving and 450 Stitched Mat, IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE)e-ISSN: 2278-1684, p- ISSN: 2320-334 X PP 09-13.
DOI: 10.9790/1684
Google Scholar
[13]
J. G. Carrillo, W. J. Cantwell, Mechanical properties of a novel fiber-metal laminates based on a polypropylene composite, Mechanics of Materials, 41, (2009), 828-839.
DOI: 10.1016/j.mechmat.2009.03.002
Google Scholar
[14]
Asha Melba. V, Senthil Kumar. A, Vino. A, Comparative Study of Tensile and Flexural behaviour for Glass-fiber reinforced Aluminium (Glare) Laminates and Aluminium, Asian Journal of Computer Science and Technology (AJCST), Vol. No. 1, 2013, pp.5-13.
Google Scholar
[15]
ASTM, Standard test method for tensile properties of polymer matrix composite materials, ASTM D3039, Annual Book of ASTM Standards, American Society for Testing and Materials, PA, 15(03) (2006).
Google Scholar