Different Aspects of Phase Change Material Encapsulation for Sub Cool Thermal Storage - A Review

Article Preview

Abstract:

This article reviews the types of containment used on bulk storage in tank heat exchangers, macro encapsulation and micro encapsulation. The various schematics of containment used in latent heat thermal energy storage (LHTS) systems are summarized. The pressure drop due to encapsulation was reviewed and the effective ways of thermal conductivity enhancement techniques are discussed. Various containment methods like Shell type, hollow spheres, packed bed, micro encapsulation along with various experiments and investigations were categorized and listed. Around 50 related articles were reviewed on PCM innovation for further studies in this area.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

480-485

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Ponshanmugakumar. A, Aldrich Vincent. A , Simulation of solar intensity in performance of flat plate collector , International journal of research in engineering and technology, Volume 2014; 3(06): 36–41, issn: 2321-7308.

DOI: 10.15623/ijret.2014.0306006

Google Scholar

[2] Li G, Hwang Y, Radermacher R, Chun H-H. Review of cold storage materials for subzero applications. Energy 2013; 51: 1-17.

DOI: 10.1016/j.energy.2012.12.002

Google Scholar

[3] Ezan MA, Erek A, Dincer I. Energy and exergy analyses of an ice-on-coil thermal energy storage system. Energy 2011; 36: 6375-86.

DOI: 10.1016/j.energy.2011.09.036

Google Scholar

[4] Günther E, Schmid T, Mehling H, Hiebler S, Huang L. Sub cooling in hexadecane emulsions. International Journal of Refrigeration 2010; 33: 1605-11.

DOI: 10.1016/j.ijrefrig.2010.07.022

Google Scholar

[5] Cheralathan M, Velraj R, Renganarayanan S. Performance analysis on refrigeration system integrated with encapsulated PCM based cool thermal energy storage system. International Journal of Energy Res 2007; 31: 1-16.

DOI: 10.1002/er.1313

Google Scholar

[6] Bedecarrats JP, CastaneLasvignottes J, Strub F, Dumas JP. Study of phase change energy storage using spherical capsules part 1: experimental results. Energy Conversation and Management 2009; 50: 2527-36.

DOI: 10.1016/j.enconman.2009.06.004

Google Scholar

[7] Braga SL, Guzman JJM, Pacheco HGJ. A study of cooling rate of the supercooled water inside of cylindrical capsules. International Journal of Refrigeration 2009; 32: 953-99.

DOI: 10.1016/j.ijrefrig.2008.10.014

Google Scholar

[8] Eames IW, Adref KT. Freezing and melting of water in spherical enclosures of the type used in thermal (ice) storage system. Applied Thermal Engineering 2002; 22: 733-45.

DOI: 10.1016/s1359-4311(02)00026-1

Google Scholar

[9] Ismail KAR, Henriquez JR, Silva TM. A parametric study on ice formation inside a spherical capsule. International Journal of Thermal Science 2003; 42: 881-7.

DOI: 10.1016/s1290-0729(03)00060-7

Google Scholar

[10] Chan CW, Tan FL. Solidification inside a sphere- an experimental study. International Communication on Heat Mass Transfer 2006; 33: 335-41.

Google Scholar

[11] Chen SL, Lee TS. A study of supercooling phenomenon and freezing probability of water inside horizontal cylinders. International Journal of Heat Mass Transfer 1998; 41: 769-83.

DOI: 10.1016/s0017-9310(97)00134-8

Google Scholar

[12] Liu Z, Sun X, Ma C. Experimental study of the characteristics of solidification of stearic acid in an annulus and its thermal conductivity enhancement. Energy Conversation and Management 2005; 46: 971-84.

DOI: 10.1016/j.enconman.2004.05.011

Google Scholar

[13] Frusteri F, Leonardi V, Vasta S, Restuccia G. Thermal conductivity measurement of a PCM based storage system containing carbon fibers. Applied Thermal Engineering 2005; 25: 1623-33.

DOI: 10.1016/j.applthermaleng.2004.10.007

Google Scholar

[14] Tong X, Khan JA, Amin MR. Enhancement of heat transfer by inserting a metal matrix into a phase change material. Numerical Heat Transfer Part A 1996; 30: 125-41.

DOI: 10.1080/10407789608913832

Google Scholar

[15] Wen D, Ding Y. Effective thermal conductivity of aqueous suspensions of carbon nanotubes (carbon nanotube nanofluids). J Therophysics Heat Transfer 2004; 18: 481-5.

DOI: 10.2514/1.9934

Google Scholar

[16] Kumaresan V, Velraj R, Das SK. The effect of carbon nanotubes in enhancing the thermal transport properties of PCM during solidification. Heat Mass Transfer 2012; 48: 1345-55.

DOI: 10.1007/s00231-012-0980-3

Google Scholar

[17] Ho CJ, Gao JY. Preparation and thermophysical properties of nanoparticle-in paraffin emulsion as phase change material. International Communication on Heat Mass Transfer 2009; 36: 467-70.

DOI: 10.1016/j.icheatmasstransfer.2009.01.015

Google Scholar

[18] Costello YA, Melsheimer SS, Edie DD. Heat transfer and calorimetric studies of a direct contact-latent heat energy storage system; thermal storage and heat transfer in solar energy system. ASME Meeting, San Francisco, USA, 1978. p.10–5.

DOI: 10.1615/ihtc10.2360

Google Scholar

[19] Edie DD, Melsheimer SS. An immiscible fluid-heat of fusion energy storage system. In: Proceedings of Sharing the Sun: Solar Technology in the Seventies. A Joint Conference of the American Section of the International Solar Energy Society and the Solar Energy Society of Canada Inc., Winnipeg. The American Section of the International Solar Energy Society, 1976. p.227.

DOI: 10.1111/j.1751-1097.1976.tb06804.x

Google Scholar

[20] Fouda AE, Despault GJ, Taylor JB, Capes CE. Solar storage system using salt hydrate latent heat and direct contact heat exchange–II, characteristics of pilot operating with sodium sulfate solution. Solar Energy 1984; 32: 57–65.

DOI: 10.1016/0038-092x(84)90049-5

Google Scholar

[21] Farid MM, Yacoub K. Performance of direct contact latent heat storage unit. Solar Energy 1989; 43: 237–52.

DOI: 10.1016/0038-092x(89)90023-6

Google Scholar

[22] Ryu HW, Woo SW, Shin BC, Kim SD. Prevention of sub cooling and stabilization of inorganic salt hydrates as latent heat storage materials. Solar Energy Mater Solar Sells 1992; 27: 161–72.

DOI: 10.1016/0927-0248(92)90117-8

Google Scholar

[23] Farid MM, Khalaf AN. Performance of direct contact latent heat storage units with two hydrated salts. Solar Energy 1994; 52: 179–89.

DOI: 10.1016/0038-092x(94)90067-1

Google Scholar

[24] Ponshanmugakumar, A, Sivashanmugam, M, StephenJayakumar,S. Solar Driven Air Conditioning System Integrated with Latent Heat Thermal Energy Storage. Indian Journal of Science and Technology, pp.1798-1804, Nov. 2014. ISSN 0974 -5645.

DOI: 10.17485/ijst/2014/v7i11.8

Google Scholar