Computational Intelligence in Optimization of Process Parameters in Turning Metals and Composites – A Review

Article Preview

Abstract:

In the modern competitive scenario in manufacturing industries, producing products with low cost, less time and good quality are the ultimate goal of any manufacturer. To achieve the goal, several optimization tools are developed to optimize the process parameters of the machining process. Turning is one of the machining processes that cannot be avoided in any manufacturing industries. In this review, optimization of process parameters in turning process by computational intelligence (CI) paradigms for the past ten years is studied. Optimization by CI paradigms such as Fuzzy System (FS), Evolutionary Computation techniques Genetic Algorithm (GA), Swarm Intelligence including Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO), Artificial Neural Networks (ANN) etc., is considered. In turning process, surface roughness, tool wear, production time and cost are optimized.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

914-920

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. Shirpurkar, S.R. Bobde, V.V. Patil, B.N. Kale, Optimization of Turning Process Parameters by Using Tool Inserts - A Review, International Journal of Engineering and Innovative Technology, 2 (6) (2012) 216-223.

Google Scholar

[2] K. Palanikumar, L. Karunamoorthy, R. Karthikeyan and B. Latha, Optimization of Machining Parameters in Turning GFRP Composites Using a Carbide(K10) Tool Based on the Taguchi Method with Fuzzy Logics, Metals and Materials International, 12 (6) (2006).

DOI: 10.1007/bf03027748

Google Scholar

[3] S. Ramesh, L. Karunamoorhty and K. Palanikumar, Fuzzy Modeling and Analysis of Machining Parameters in Machining Titanium Alloy, Materials and Manufacturing Processes, 23 (4) (2008) 439-447.

DOI: 10.1080/10426910801976676

Google Scholar

[4] Jenn-Tsong and Ko-Ta Chiang, A grey and fuzzy algorithms integrated approach to the optimization of turning Hadfield steel with Al2O3/TiC mixed ceramic tool, Journal of Materials Processing Technology, 207 (2008) 89–97.

DOI: 10.1016/j.jmatprotec.2007.12.060

Google Scholar

[5] Shibendu Shekhar Roy Design of genetic-fuzzy expert system for predicting surface finish in ultra-precision diamond turning of metal matrix composite, Journal of Materials Processing Technology, 173 (2006) 337–344.

DOI: 10.1016/j.jmatprotec.2005.12.003

Google Scholar

[6] Issam Hanafi, Abdellatif Khamlichi, Francisco Mata Cabrera, Pedro J. Nuñez López , Abdallah Jabbouri, Fuzzy rule based predictive model for cutting force in turning of reinforced PEEK composite, Measurement, 45 (2012) 1424–1435.

DOI: 10.1016/j.measurement.2012.03.022

Google Scholar

[7] Thatoi D. N, Acharya A. K, Routara B.C. Application of Response surface method and Fuzzy logic approach to optimize the process parameters for surface roughness in CNC turning, Advances in Engineering Science and Management, International Conference, ICAESM, (2012).

Google Scholar

[8] Franci Cus and Joze Balic, Optimization of cutting process by GA approach, Robotics and Computer Integrated Manufacturing, 19 (2003) 113–121.

DOI: 10.1016/s0736-5845(02)00068-6

Google Scholar

[9] Pinkey Chauhan, Kusum Deep, Millie Pant, Optimizing CNC turning process using real coded genetic algorithm and differential evolution, Global Journal of Technology and Optimization, 2 (2011) 157-165.

Google Scholar

[10] Saber M. Elsayed, Ruhul A. Sarker, DarylL. Essam, A new genetic algorithm for solving optimization problems, Engineering Applications of Artificial Intelligence, 27 (2014) 57–69.

DOI: 10.1016/j.engappai.2013.09.013

Google Scholar

[11] Doriana M, D'Addona, Roberto Teti, Genetic Algorithm based Optimization of Cutting Parameters in Turning Processes, Procedia CIRP, 7 (2013) 323 – 328.

DOI: 10.1016/j.procir.2013.05.055

Google Scholar

[12] H. Ganesan, G. Mohankumar, Optimization of Machining Techniques in CNC Turning Centre Using Genetic Algorithm, Arab J Sci Eng, 38 (2013) 1529–1538.

DOI: 10.1007/s13369-013-0539-8

Google Scholar

[13] M. Durairaj and S. Gowri, Parametric Optimization for Improved Tool Life and Surface Finish in Micro Turning using Genetic Algorithm, Procedia Engineering, 64 (2013) 878 – 887.

DOI: 10.1016/j.proeng.2013.09.164

Google Scholar

[14] B.C. Routara, A.K. Sahoo, A.K. Parida and P.C. Padhi, Response Surface Methodology and Genetic Algorithm used to Optimize the  Cutting condition for Surface Roughness  Parameters in CNC Turning, Procedia Engineering, 38 (2012) 1893 – (1904).

DOI: 10.1016/j.proeng.2012.06.232

Google Scholar

[15] Ganesan. H and Mohankumar. G, Study on optimization of machining parameters in turning process using evolutionary algorithm with experimental verification, International Journal of Mechanical Engieering and Technology, 2 (1) (2011) 10–21.

Google Scholar

[16] R. Saravanan and V. Janakiraman, Study on Reduction of Machining Time in CNC Turning Centre by Genetic Algorithm, International Conference on Computational Intelligence and Multimedia Applications, 1 (2007) 481-486.

DOI: 10.1109/iccima.2007.92

Google Scholar

[17] Ramo´n Quiza Sardinas, Marcelino Rivas Santana, Eleno Alfonso Brindis, Genetic algorithm-based multi-objective optimiza-tion of cutting parameters in turning processes, Engineering Applications of Artificial Intelligence, 19 (2006) 127–133.

DOI: 10.1016/j.engappai.2005.06.007

Google Scholar

[18] Eric Bonabeau, David Corne, Joshua Knowles, Riccardo Poli, Swarm intelligence theory - A snapshot of the state of the art, Theoretical Computer Science, 411 (21) (2010) 2081-(2083).

DOI: 10.1016/j.tcs.2010.03.001

Google Scholar

[19] E. Dorigo, The ant system: Optimization by a colony of cooperating agents, IEEE Transaction on Systems, Man and Cybernetics- Part B, 26 (1) (2006) 29-41.

DOI: 10.1109/3477.484436

Google Scholar

[20] F. Cus, J. Balic, U. Zuperl, Hybrid ANFIS-ants system based optimisation of turning parameters, Journal for Achievements in Materials and Manufacturing Engineering, 36 (1) (2009) 79-86.

Google Scholar

[21] Vaibhav B. Pansare, Mukund V. Kavade, Optimization of cutting parameters in multipass turning operation using ant colony algorithm, International Journal of Engineering Science & Advanced Technology, 2 (4) (2012) 955 – 960.

Google Scholar

[22] K. Vijayakumar, G. Prabhaharan, P. Asokan, R. Saravanan, Optimization of multi-pass  turning operations using ant colony system, International Journal of Machine Tools & Manufacture, 43 (15) (2003) 1633–1639.

DOI: 10.1016/s0890-6955(03)00081-6

Google Scholar

[23] M. -C. Chen, D. -M. Tsai, A simulated annealing approach for optimization of multi-pass turning operations, International Journal of Production Research, 34 (10) (1996) 2803–2825.

DOI: 10.1080/00207549608905060

Google Scholar

[24] Yi-Chi Wang, A note on optimization of multi-pass turning operations using ant colony system, International Journal of Machine Tools & Manufacture 47 (2007) 2057–(2059).

DOI: 10.1016/j.ijmachtools.2007.03.001

Google Scholar

[25] Hrelja Marko, Klancnik Simon, Irgolic Tomaz, Paulic Matej, Balic Joze, Brezocnik Miran, Turning Parameters Optimization using Particle SwarmOptimization, Procedia Engineering, 69 ( 2014 ) 670 – 677.

DOI: 10.1016/j.proeng.2014.03.041

Google Scholar

[26] Ali R. Yildiz, Optimization of cutting parameters in multi-pass turning using artificial bee colony-based approach, Information Sciences, 220 (2013) 399–407.

DOI: 10.1016/j.ins.2012.07.012

Google Scholar

[27] Norfadzlan Yusup, Azlan Mohd Zain, Siti Zaiton Mohd Hashim, Overview of PSO for Optimizing Process Parameters of machining, Procedia Engineering, 29 (2012) 914 – 923.

DOI: 10.1016/j.proeng.2012.01.064

Google Scholar

[28] N. Muthukrishnan, J. Paulo Davim, Optimization of machining parameters of Al/SiC-MMC with ANOVA and ANN analysis, Journal of Materials Processing Technology, 209 (2009 ) 225–232.

DOI: 10.1016/j.jmatprotec.2008.01.041

Google Scholar

[29] Uros Zuperl and Franci Cus, Optimization of cutting conditions during cutting using neural networks, Robotics and Computer Integrated Manufacturing, 19 (1-2) (2003) 189–199.

DOI: 10.1016/s0736-5845(02)00079-0

Google Scholar

[30] U. Zuperl, F. Cus, B. Mursec, T. Ploj, A hybrid analytical-neural network approach to the determination of optimal cutting conditions, Journal of Materials Processing Technology, 157–158 (2004) 82–90.

DOI: 10.1016/j.jmatprotec.2004.09.019

Google Scholar

[31] Franci Cus, Uros Zuperl, Approach to optimization of cutting conditions by using artificial neural networks, Journal of Materials Processing Technology, 173 (2006) 281–290.

DOI: 10.1016/j.jmatprotec.2005.04.123

Google Scholar

[32] E. García-Plaza, P.J. Núñez, D.R. Salgado, I. Cambero, J.M. Herrera Olivenza, J. García Sanz-Calcedo, Surface Finish Monitoring in Taper Turning CNC Using Artificial Neural Network and Multiple Regression Methods, Procedia Engineering, 63 (2013).

DOI: 10.1016/j.proeng.2013.08.245

Google Scholar