An Environment-Friendly Method to Catalytically Oxidate NO in Waste Water by Supported Manganese Oxide on Graphite Oxide

Article Preview

Abstract:

In order to generate powerful radicals as oxidizing species for the complete oxidation of NO, homogeneous activation of peroxymonosulfate (Oxone: PMS) by the Mn3O4/GO catalysts was explored. The catalytic oxidation of NO from waste gas was investigated using advanced oxidation process based on sulfate radicals that produced. The manganese oxide immobilized on graphene oxide (GO) can activate PMS for the oxidation of NO in water. We not only took advantage of the high oxidation–reduction potential of produced sulfite radicals but also an opportunity to oxidize NO on less complex compounds with low dosages. The Mn3O4/GO catalysis system was characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results showed that Mn3O4 was well-distributed on GO. The Mn3O4/GO catalyst system exhibited high efficiency for NO oxidation when the Mn3O4/GO catalyst has an optimum Mn3O4 loading. In addition, the best catalytic oxidation can be achieved within 30 min with pH 4 and 6 mM PMS at 25 °C. Therefore, the results indicate promising potential for a system utilizing Mn3O4/PMS to oxidize NO for offgas treatment.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-9

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H.L. Jong, J.S. Steven, H.O. Se, Improved NOx reduction over the staged Ag/Al2O3 catalyst system . Applied Catalsis A: General, 2008, pp.78-86.

DOI: 10.1016/j.apcata.2008.03.012

Google Scholar

[2] Q. Li, M. Meng, F.F. Dai, Y.Q. Zha, Y.N. Xie, T.D. Hu, J. Zhang, Multifunctional hydrotalcite-derived K/MnMgAlO catalysts used for soot combustion, NOx storage and simultaneous soot-NOx removal. Chemical Engineering Journal, 2012, pp.106-112.

DOI: 10.1016/j.cej.2012.01.009

Google Scholar

[3] A. Setiabudi, M. Makkee, J.A. Moulijn, An optimal NOx assisted abatement of diesel soot in an advanced catalytic filter design. Appllied Catalysis B: Environmental, 2003, pp.35-45.

DOI: 10.1016/s0926-3373(02)00213-8

Google Scholar

[4] L. Castoldi, N. Artioli, R. Matarrese, L. Lietti, Study of DPNR catalysts for combined soot oxidation and NOx reduction. Catasis Today, 2010, pp.384-389.

DOI: 10.1016/j.cattod.2010.03.022

Google Scholar

[5] A . Fritz, V. Pitchon, The current state of research on automotive lean NOx catalysis. Appllied Catalysis B: Environmental, 1997, pp.1-25.

DOI: 10.1016/s0926-3373(96)00102-6

Google Scholar

[6] K. Min, D.P. Eun, M.K. Ji, E.Y. Jae, Manganese oxide catalysts for NOx reduction with NH3 at low temperature. Applied Catalysis A: General, 2007, pp.261-269.

DOI: 10.1016/j.apcata.2007.05.024

Google Scholar

[7] Y. Teraoka, K. Kanada, S. Kagawa, Synthesis of La-K-Mn-O perovskite-type oxides and their catalytic property for simultaneous removal of NOx and diesel soot particulates. Appllied Catalysis B: Environmental, 2001, pp.73-78.

DOI: 10.1016/s0926-3373(01)00202-8

Google Scholar

[8] D. Fino, P. Fino, G. Saracco, V. Specchia, Studies on kinetics and mechanism of La2-xKxCu1-yVyO4 layered perovskites for the combined removal of diesel particulate and NOx. Appllied Catalysis B: Environmental, 2003, pp.243-259.

DOI: 10.1016/s0926-3373(02)00311-9

Google Scholar

[9] J. Liu, Z. Zhao, C.M. Xu, A.J. Duan, Simultaneous removal of NOx and diesel soot over nanometer Ln-Na-Cu-O perovskite-like complex oxide catalysts. Appllied Catalysis B: Environmental, 2008, pp.61-72.

DOI: 10.1016/j.apcatb.2007.09.001

Google Scholar

[10] H. Lin, Y.J. Li, W.F. Shangguan, Soot oxidation and NOx reduction over BaAl2O4 catalyst. Combustion and Flame, 2009, p.2063-(2070).

DOI: 10.1016/j.combustflame.2009.08.006

Google Scholar

[11] Z.Q. Li, M. Meng, Q. Li, Y.N. Xie, T.D. Hu, J. Zhang, Fe-substituted nanometric La0. 9K0. 1Co1-xFexO3-δ perovskite catalysts used for soot combustion, NOx storage and simultaneous catalytic removal of soot and NOx. Chemical Engineering Journal, 2010, pp.98-105.

DOI: 10.1016/j.cej.2010.08.036

Google Scholar

[12] K. Wang, L. Qian, L. Zhang, H.R. Liu, Z.F. Lan, Simultaneous removal of NOx and soot particulates over La0. 7Ag0. 3MnO3 perovskite oxide catalysts. Catalysis Today, 2010. 158: , pp.423-426.

DOI: 10.1016/j.cattod.2010.06.001

Google Scholar

[13] G. Qi, R.T. Yang, Performance and kinetics study for low-temperature SCR of NO with NH3 over MnOx-CeO2 catalyst. Journal Catalysis, 2003, pp.434-441.

DOI: 10.1016/s0021-9517(03)00081-2

Google Scholar

[14] K. Tikhomirov, O. Krocher, M. Elsener, A. Wokaun, MnOx-CeO2 mixed oxides for the low-temperature oxidation of diesel soot. Appllied Catalysis B: Environmental, 2006. , pp.72-78.

DOI: 10.1016/j.apcatb.2005.11.003

Google Scholar

[15] E. Saab, S. Aouad, E. Abi-Aad, E. Zhilinskaya, A. Aboukais, Carbon black oxidation in the presence of Al2O3, CeO2, and Mn oxide catalyst: an EPR study. Catalysis Today, 2007, pp.286-290.

DOI: 10.1016/j.cattod.2006.08.031

Google Scholar

[16] E.V. Sánchez, L.E. Fernáadez, J.M. Callardo-Amores, C.H. Martínez, C. Pistarino, M. Panizza, C. Resini, G. Busca, A study of a ceria-zirconia-supported manganese oxide catalyst for combustion of diesel soot particles. Combustion and Flame, 2008, pp.97-104.

DOI: 10.1016/j.combustflame.2007.11.010

Google Scholar

[17] W. BLi, X.F. Yang, L.F. Chen, J.A. Wang, Adsorption/desorption of NOx on MnO2/Zro2 oxides prepared in reverse microemulsions. Catalysis Today, 2009, pp.75-80.

DOI: 10.1016/j.cattod.2009.03.028

Google Scholar

[18] G.P. Anipsitakis, D.D. Dionysiou, Degradation of organic of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt. Environmental Science & Technology, 2003, pp.4790-4797.

DOI: 10.1021/es0263792

Google Scholar

[19] J. Fernandez, P. Maruthamuthu, A. Renken, J. Kiwi, Bleaching and photobleaching of Orange II within seconds by the oxone/Co2+ reagent in Fenton-like processes. Appllied Catalysis B: Environmental, 2004, pp.207-215.

DOI: 10.1016/j.apcatb.2003.12.018

Google Scholar

[20] C. Liang, C.F. Huang, Y.J. Chen, Potential for activated persulfate degradation of BETX contamination. Water Research, 2008a, pp.4091-4100.

DOI: 10.1016/j.watres.2008.06.022

Google Scholar

[21] C. Liang, I.L. Lee, I.Y. Hsu, C.P. Liang, Y.L. Lin, Persulfate oxidation of trichloroethylene with and without iron activation in porous media. Chemosphere, 2008b, pp.426-435.

DOI: 10.1016/j.chemosphere.2007.06.077

Google Scholar

[22] W.S. Hummers, R.E. Offenman, Preparation of graphitic oxide. Journal of the American Chemical Society, 1958, pp.139-139.

Google Scholar

[23] T. He, D.R. Chen, X.L. Jiao, Controlled synthesis of Co3O4 nanoparticles through oriented aggregation. Chemistry of Materials, 2004, pp.737-743.

Google Scholar

[24] N. Inho, K. Nam, K. Gil-Pyo, P. Junsu, P. Jongheop, One step preparation of Mn3O4/graphene composites for use as an anode in Li ion batteries, Journal of power Source, 2013, pp.1-7.

Google Scholar

[25] A. Askarinejad, M. Bagherzadeh, A. Morsali, Catalysis performance of Mn3O4 and Co3O4 nanocrystals prepared by sonochemical method in exopxidation of styrene and cyclooctrnr. Applied Surface Science, 2010, pp.6678-6682.

DOI: 10.1016/j.apsusc.2010.04.069

Google Scholar

[26] A. Harold, Schward, An Introduction to Radiation Chemistry. Journal of the American Chemical Society, 1964, pp.4227-4228.

Google Scholar

[27] P.H. Shi, R.J. Su, S.B. Zhu, M.C. Zhu, D.X. Li, S.H. Xu, Supported manganese oxide on graphene oxide: Highly efficient catalysts for the removal of Orange II from water. Journal of Hazardous Materials, 2012, pp.331-339.

DOI: 10.1016/j.jhazmat.2012.06.007

Google Scholar