Critical Evaluation of Isothermal Separating Anosovite (Mg0.3Ti2.7O5) Phase from Synthesized Ti-Bearing Blast Furnace Slag by Super Gravity

Article Preview

Abstract:

Anosovite (Mg0.3Ti2.7O5) phase was successfully separated from synthesized titanium bearing blast furnace slag by super gravity. Supposing that the titanium exists in the slag in terms of TiO2, the mass fraction of TiO2 is 23.49% in the parallel sample without centrifugal separation. With the parameter of t=5min, T=1553K and the gravity coefficient ranged from 600 to 1000, the mass fraction of TiO2 in the concentrate increase from 40.17% to 58.35%, while the recovery ratio of Ti in the concentrate slightly decrease from 83.49% to 81.81%.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

385-391

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.C. Li, Z.C. Guo, J.T. Gao, Isothermal enriching perovskite phase from CaO-TiO2-SiO2-Al2O3-MgO system by super gravity, ISIJ Int. 54 (2014) 743-749.

DOI: 10.2355/isijinternational.54.743

Google Scholar

[2] J.C. Li, Z.C. Guo, J.T. Gao, Evaluation of isothermal separating perovskite phase from CaO-TiO2-SiO2-Al2O3-MgO melt by super gravity, Metall. Mater. Trans. B. 45 (2014) 1171-1174.

DOI: 10.1007/s11663-014-0062-7

Google Scholar

[3] Z.Z. Guo, T.P. Lou, L. Zhang, L.N. Zhang, Z.T. Sui, Precipitation and growth of perovskite phase in titanium bearing blast furnace slag, Acta Metall. Sin. Engl. 20 (2007) 9-14.

DOI: 10.1016/s1006-7191(07)60002-7

Google Scholar

[4] J.C. Li, Z.C. Guo, J.T. Gao, Isothermal enriching and separation of perovskite phase from CaO–TiO2–SiO2–Al2O3–MgO melt by centrifugal force, Ironmak Steelmak. 41 (2014) 776-783.

DOI: 10.2355/isijinternational.54.743

Google Scholar

[5] J. Li, Z.T. Zhang, M. Zhang, M. Guo, X.D. Wang, The Influence of SiO2 on the Extraction of Ti Element from Ti-bearing Blast Furnace Slag, Steel research int. 82 (2011) 607-614.

DOI: 10.1002/srin.201000217

Google Scholar

[6] V. Grass, P. Istomin, L. Nazarova, X-ray diffraction refinement of the crystal structure of anosovite prepared from leucoxene, Cryst. Res. Technol. 44 (2009), 117-122.

DOI: 10.1002/crat.200800213

Google Scholar

[7] J. Li, Z.T. Zhang, X.D. Wang, Precipitation behaviour of Ti enriched phase in Ti bearing slag, Ironmak Steelmak. 39 (2013), 414-418.

DOI: 10.1179/1743281211y.0000000055

Google Scholar

[8] J. C. Li, Z. C. Guo, J. T. Gao: Laboratory assessment of isothermal separation of V containing spinel phase from vanadium slag by centrifugal casting, Ironmak Steelmak. 41 (2014) 710-714.

DOI: 10.1179/1743281214y.0000000185

Google Scholar

[9] J. C. Li, Z. C. Guo, J. T. Gao, Assessment of super-gravity concentrating V-containing spinel phase from vanadium slag, High Temperature Materials and Processes. 2014, DOI 10. 1515/htmp-2013-0130.

DOI: 10.1515/htmp-2013-0130

Google Scholar

[10] J. C. Li, Z. C. Guo: Innovative methodology to enrich britholite (Ca3Ce2[(Si, P)O4]3F) phase from rare earth-rich slag by super gravity, Metall Mater Trans B. 45 (2014) 1272-1280.

DOI: 10.1007/s11663-014-0071-6

Google Scholar

[11] J.C. Li, Z.C. Guo, T. Yang, Z.C. Yue, C.H. Ma, Recovery behavior of separating britholite (Ca3Ce2[(Si, P)O4]3F) phase from rare earth-rich slag by centrifugal casting, High Temperature Materials and Processes. 2014, DOI 10. 1515/htmp-2014-0053.

DOI: 10.1515/htmp-2014-0053

Google Scholar