Production of Renewable Petrochemicals from Catalytic Co-Pyrolysis of Beech Wood and Low-Density Polyethylene with Mesoporous Bifunctional ZSM-5 Zeolites

Article Preview

Abstract:

This study investigated catalytic fast pyrolysis (CFP) of beech wood, low-density polyethylene (LDPE), and their mixture (mass ratio of 1) with a conventional microporous ZSM-5 and mesoporous bifunctional Zn/ZSM-5meso zeolite prepared by desilication of the conventional ZSM-5 with NaOH solution and then impregnation with Zn.The generation of mesopores by desilication improved the diffusion property of the zeolite, which decreased the formation of undesired polyaromatic hydrocarbons from secondary polymerization reactions of monoaromatics in CFP. In addition, the impregnation of Zn increased the dehydrogenation activity of the zeolites, and thus enhanced the conversion of low-value alkanes to valuable olefins. As a result, Zn/ZSM-5meso produced higher yields (56.0 C%) of valuable petrochemicals (monoaromatic hydrocarbons and olefins) and lower yields of undesired polyaromatics (1.70 C%) and alkanes (10.2 C%) in co-feed CFP of the beech wood and LDPE mixture than ZSM-5 (48.2 C%, 4.18 C%, and 18.7 C% for petrochemicals, polyaromatics, and alkanes, respectively).ZSM-5 desilication and impregnation with Zn thus have a beneficial effect on improve the product distribution in CFP of biomass and plastic mixtures. In addition, the results suggest that CFP may provide a promising technology for producing renewable petrochemicals from municipal and agricultural solid wastes, which usually contain high contents of biomass and waste plastics.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

392-401

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K.B. Adhikary, S.S. Pang, M.P. Staiger, Dimensional stability and mechanical behaviour of wood-plastic composites based on recycled and virgin high-density polyethylene (HDPE), Compos. Part B-Eng. 39 (2008) 807-815.

DOI: 10.1016/j.compositesb.2007.10.005

Google Scholar

[2] S.M. Al-Salem, P. Lettieri, J. Baeyens, Recycling and recovery routes of plastic solid waste (PSW): A review, Waste Manage. 29 (2009) 2625-2643.

DOI: 10.1016/j.wasman.2009.06.004

Google Scholar

[3] J.C. Hargreaves, M.S. Adl, P.R. Warman, A review of the use of composted municipal solid waste in agriculture, Agr. Ecosyst. Environ. 123 (2008) 1-14.

DOI: 10.1016/j.agee.2007.07.004

Google Scholar

[4] X. Li, J. Li, G. Zhou, Y. Feng, Y. Wang, G. Yu, S. Deng, J. Huang, B. Wang, Enhancing the production of renewable petrochemicals by co-feeding of biomass with plastics in catalytic fast pyrolysis with ZSM-5 zeolites, Appl. Catal., A (2014).

DOI: 10.1016/j.apcata.2014.05.015

Google Scholar

[5] X. Li, H. Zhang, J. Li, L. Su, J. Zuo, S. Komarneni, Y. Wang, Improving the aromatic production in catalytic fast pyrolysis of cellulose by co-feeding low-density polyethylene, Appl. Catal., A 455 (2013) 114-121.

DOI: 10.1016/j.apcata.2013.01.038

Google Scholar

[6] T.R. Carlson, Y. -T. Cheng, J. Jae, G.W. Huber, Production of green aromatics and olefins by catalytic fast pyrolysis of wood sawdust, Energy Environ. Sci. 4 (2011) 145.

DOI: 10.1039/c0ee00341g

Google Scholar

[7] T.R. Carlson, T.R. Vispute, G.W. Huber, Green gasoline by catalytic fast pyrolysis of solid biomass derived compounds, Chemsuschem 1 (2008) 397-400.

DOI: 10.1002/cssc.200800018

Google Scholar

[8] C. Dorado, C.A. Mullen, A.A. Boateng, H-ZSM5 Catalyzed co-pyrolysis of biomass and plastics, ACS Sustainable Chem. Eng. 2 (2014) 301-311.

DOI: 10.1021/sc400354g

Google Scholar

[9] Y.Q. Yu, X.Y. Li, L. Su, Y. Zhang, Y.J. Wang, H.Z. Zhang, The role of shape selectivity in catalytic fast pyrolysis of lignin with zeolite catalysts, Appl. Catal., A 447 (2012) 115-123.

DOI: 10.1016/j.apcata.2012.09.012

Google Scholar

[10] J. Li, X. Li, G. Zhou, W. Wang, C. Wang, S. Komarneni, Y. Wang, Catalytic fast pyrolysis of biomass with mesoporous ZSM-5 zeolites prepared by desilication with NaOH solutions, Appl. Catal., A, 470 (2014) 115-122.

DOI: 10.1016/j.apcata.2013.10.040

Google Scholar

[11] Y. Yu, Y. Zeng, J. Zuo, F. Ma, X. Yang, X. Zhang, Y. Wang, Improving the conversion of biomass in catalytic fast pyrolysis via white-rot fungal pretreatment, Bioresour. Technol. 134 (2013) 198-203.

DOI: 10.1016/j.biortech.2013.01.167

Google Scholar

[12] L. Zhang, J. Gao, J. Hu, W. Li, J. Wang, Lanthanum oxides-improved catalytic performance of ZSM-5 in toluene alkylation with methanol, Catal. Lett. 130 (2009) 355-361.

DOI: 10.1007/s10562-009-9965-3

Google Scholar

[13] X. Long, Q. Zhang, Z. -T. Liu, P. Qi, J. Lu, Z. -W. Liu, Magnesia modified H-ZSM-5 as an efficient acidic catalyst for steam reforming of dimethyl ether, Appl. Catal., B 134-135 (2013) 381-388.

DOI: 10.1016/j.apcatb.2013.01.034

Google Scholar

[14] C. Wang, Z. Tian, L. Wang, R. Xu, Q. Liu, W. Qu, H. Ma, B. Wang, One-step hydrotreatment of vegetable oil to produce high quality diesel-range alkanes, ChemSusChem 5 (2012) 1974-(1983).

DOI: 10.1002/cssc.201200219

Google Scholar

[15] C. Fernandez, I. Stan, J.P. Gilson, K. Thomas, A. Vicente, A. Bonilla, J. Perez-Ramirez, Hierarchical ZSM-5 zeolites in shape-selective xylene isomerization: role of mesoporosity and acid site speciation, Chem-Eur J 16 (2010) 6224-6233.

DOI: 10.1002/chem.200903426

Google Scholar

[16] M. Bjorgen, F. Joensen, M.S. Holm, U. Olsbye, K.P. Lillerud, S. Svelle, Methanol to gasoline over zeolite H-ZSM-5: Improved catalyst performance by treatment with NaOH, Appl. Catal., A 345 (2008) 43-50.

DOI: 10.1016/j.apcata.2008.04.020

Google Scholar

[17] M.S. Holm, S. Svelle, F. Joensen, P. Beato, C.H. Christensen, S. Bordiga, M. Bjorgen, Assessing the acid properties of desilicated ZSM-5 by FTIR using CO and 2, 4, 6-trimethylpyridine (collidine) as molecular probes, Appl. Catal., A 356 (2009).

DOI: 10.1016/j.apcata.2008.11.033

Google Scholar

[18] W. -L. Fanchiang, Y. -C. Lin, Catalytic fast pyrolysis of furfural over H-ZSM-5 and Zn/H-ZSM-5 catalysts, Appl. Catal., A 419-420 (2012) 102-110.

DOI: 10.1016/j.apcata.2012.01.017

Google Scholar

[19] H.J. Park, H.S. Heo, J.K. Jeon, J. Kim, R. Ryoo, K.E. Jeong, Y.K. Park, Highly valuable chemicals production from catalytic upgrading of radiata pine sawdust-derived pyrolytic vapors over mesoporous MFI zeolites, Appl. Catal., B 95 (2010).

DOI: 10.1016/j.apcatb.2010.01.015

Google Scholar

[20] T.R. Carlson, J. Jae, Y. -C. Lin, G.A. Tompsett, G.W. Huber, Catalytic fast pyrolysis of glucose with HZSM-5: The combined homogeneous and heterogeneous reactions, J. Catal. 270 (2010) 110-124.

DOI: 10.1016/j.jcat.2009.12.013

Google Scholar

[21] Y. -T. Cheng, G.W. Huber, Production of targeted aromatics by using Diels-Alder classes of reactions with furans and olefins over ZSM-5, Green Chem. 14 (2012) 3114-3125.

DOI: 10.1039/c2gc35767d

Google Scholar

[22] J. Jae, G.A. Tompsett, A.J. Foster, K.D. Hammond, S.M. Auerbach, R.F. Lobo, G.W. Huber, Investigation into the shape selectivity of zeolite catalysts for biomass conversion, J Catal. 279 (2011) 257-268.

DOI: 10.1016/j.jcat.2011.01.019

Google Scholar

[23] Y.M. Ni, A.M. Sun, X.L. Wu, G.L. Hai, J.L. Hu, T. Li, G.X. Li, Preparation of hierarchical mesoporous Zn/HZSM-5 catalyst and its application in MTG reaction, J. Nat. gas Chem. 20 (2011) 237-242.

DOI: 10.1016/s1003-9953(10)60184-3

Google Scholar