[1]
Handbook 5, Design of Buildings for the Fire Situation, Book by Leonardo da Vinci Pilot Project CZ/02/B/F/PP-134007, (2005).
Google Scholar
[2]
F. Wald, et al., Calculation of Fire Resistance of Structures, CVUT, Prague, (2005).
Google Scholar
[3]
A. H. Buchanan, Structural Design for Fire Safety, John Wiley a Sons Ltd, England, (2003).
Google Scholar
[4]
J. Kralik, A RSM Approximation in Probabilistic Nonlinear Analysis of Fire, Resistance of Technology Support Structures, submitted to Advanced Materials Research, 2014, vol. 969, pp.1-8.
DOI: 10.4028/www.scientific.net/amr.969.1
Google Scholar
[5]
L. Lausova, M. Krejsa, Experiment of Frame Structure in Fire, in: Proceedings of an International Conference on New Trends in Statics and Dynamics of Buildings, Bratislava, October 3-5, (2012).
Google Scholar
[6]
L. Lausova, I. Skotnicova, J. Brozovsky, Numerical Analysis of Effects of Fire to Steel Frame Structures, in: The Twelfth International Conference on Computational Structures Technology, Naples, Italy, September 2-5, (2014).
DOI: 10.4203/ccp.106.20
Google Scholar
[7]
B. Taraba, Z. Michalec, V. Michalcova, T. Blejchar, M. Bojko, M. Kozubkova, CFD Simulations of the Effect of Wind on the Spontaneous Heating of Coal Stockpiles, Fuel, 2014, vol. 118, pp.107-112.
DOI: 10.1016/j.fuel.2013.10.064
Google Scholar
[8]
I. Skotnicova, L. Lausova, J. Brozovsky, Dynamic Heat Transfer Through the External Wall of a Timber Structure, submitted to Applied Mechanics and Materials, 2014, vol. 617, pp.162-166.
DOI: 10.4028/www.scientific.net/amm.617.162
Google Scholar