[1]
M. Cakir, A graphic user interface for evaluation of the camera parameters, Comput. Appl. Eng. Educ. 21 (2013) 147–157.
DOI: 10.1002/cae.20457
Google Scholar
[2]
E. Jallas, R. Sequeira, P. Martin, S. Turner, P. Papajorgji, Mechanistic virtual modeling: coupling a plant simulation model with a three-dimensional plant architecture component, Environ. Model. Assess. 14 (2009) 29-45.
DOI: 10.1007/s10666-008-9164-4
Google Scholar
[3]
O. Clatz, M. Sermesant, P. -Y. Bondiau, H. Delingette, S.K. Warfield, G. Malandain, N. Ayache, Realistic simulation of the 3-D growth of brain tumors in MR images coupling diffusion with biomechanical deformation, IEEE T. Med. Imaging 24(2005).
DOI: 10.1109/tmi.2005.857217
Google Scholar
[4]
J. P. Mattern, K. Fennel, M. Dowd, Estimating time-dependent parameters for a biological ocean model using an emulator approach, J. Marine Syst. 96–97 (2012) 32–47.
DOI: 10.1016/j.jmarsys.2012.01.015
Google Scholar
[5]
F. Martinez, L. C. Herrero, S. D. Pablo, Open loop wind turbine emulator, Renew. Energ. 63 (2014) 212-221.
DOI: 10.1016/j.renene.2013.09.019
Google Scholar
[6]
N. Margvelashvili, J. Andrewartha, M. Herzfeld, B. J. Robson, V. E Brando, Satellite data assimilation and estimation of a 3D coastal sediment transport model using error-subspace emulators, Environ. Modell. Softw. 40 (2013) 191-201.
DOI: 10.1016/j.envsoft.2012.09.009
Google Scholar
[7]
M. Singh, A. Raj, B. Singh, Modified Mohr–Coulomb criterion for non-linear triaxial and polyaxial strength of jointed rocks, Int. J. Rock. Mech. Min 51 (2012) 43–52.
DOI: 10.1016/j.ijrmms.2011.12.007
Google Scholar
[8]
S. J. Lee, Y. M. A. Hashash, E. G. Nezami, Simulation of triaxial compression tests with polyhedral discrete elements, Comput. Geotech. 43 (2012) 92–100.
DOI: 10.1016/j.compgeo.2012.02.011
Google Scholar
[9]
H. Nawir, Viscous effects on yielding characteristics of sand in triaxial compression, Dissertation, Civil Engineering Department, The University of Tokyo, (2002).
Google Scholar
[10]
J. V. Stafford, E. Audsley, J. R. Sharp, The determination of best fit linear failure envelopes to Mohr circles", J. Agr. Eng. Res. 33 (1986) 33-38.
DOI: 10.1016/s0021-8634(86)80027-0
Google Scholar
[11]
M. Singh, A. Raj, B. Singh, Modified Mohr–Coulomb criterion for non-linear triaxial and polyaxial strength of intact rocks, Int. J. Rock. Mech. Min 48 (2011) 546–555.
DOI: 10.1016/j.ijrmms.2011.02.004
Google Scholar
[12]
R. Ekawita, M. M. Munir, Suprijadi, H. Nawir, Khairurrijal, A comprehensive characterization of a linear deformation sensor for applications in triaxial compression tests, Proc. 2013 Int. Conf. Computer, Control, Informatics and Its Appl. (2013).
DOI: 10.1109/ic3ina.2013.6819172
Google Scholar