[1]
R. A. Dweik, A. Amann, Exhaled breath analysis: the new frontier in medical testing, editorial to the Journal of Breath Research, 2 (2008).
DOI: 10.1088/1752-7163/2/3/030301
Google Scholar
[2]
T. H. Risby, F. K. Tittel, Current status of midinfrared quantum and interband cascade lasers for clinical breath analysis, Optics Engineering 49(11) (2010) 111123.
DOI: 10.1117/1.3498768
Google Scholar
[3]
M. Zhou, Y. Liu, Y. Duan, Breath biomarkers in diagnosis of pulmonary diseases, Clinica Chimica Acta 413 (2012) 1770–1780.
DOI: 10.1016/j.cca.2012.07.006
Google Scholar
[4]
L. Wu, R. Wang, Carbon monoxide: Endogenous production, physiological functions, and pharmacological applications, Pharmacological Reviews 57 (2005) 585–630.
DOI: 10.1124/pr.57.4.3
Google Scholar
[5]
C. Wang, P. Sahay, Breath analysis using laser spectroscopic techniques: Breath biomarkers, spectral fingerprints, and detection limits, Sensors 9 (2009) 8230-8262.
DOI: 10.3390/s91008230
Google Scholar
[6]
M. R. McCurdy, Y. Bakhirkin, G. Wysocki, R. Lewicki, F. K. Tittel, Recent advances of laser spectroscopy based techniques for applications in breath analysis, Journal of Breath Research, 1 (2007) 014001.
DOI: 10.1088/1752-7155/1/1/014001
Google Scholar
[7]
M. Sowa, M. Mürtz, P. Hering, Mid-infrared laser spectroscopy for online analysis of exhaled CO, Journal of Breath Research 4 (2010) 047101.
DOI: 10.1088/1752-7155/4/4/047101
Google Scholar
[8]
J. Wojtas, Z. Bielecki, T. Stacewicz, J. Mikołajczyk, M. Nowakowski, Ultrasensitive laser spectroscopy for breath analysis, Optoelectronics Review 20(1) (2012) 26–39.
DOI: 10.2478/s11772-012-0011-4
Google Scholar
[9]
A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, R.F. Curl, Application of quantum cascade lasers to trace gas analysis, Applied Physics B 90 (2008) 165–176.
DOI: 10.1007/s00340-007-2846-9
Google Scholar
[10]
J. B. McManus, D. D. Nelson, S. C. Herndon, J. H. Shorter, M. S. Zahniser, S. Blaser, L. Hvozdara, A. Muller, M. Giovannini, J. Faist, Comparison of cw and pulsed operation with a TE-cooled quantum cascade infrared laser for detection of nitric oxide at 1900 cm−1, Applied Physics B 85 (2006).
DOI: 10.1007/s00340-006-2407-7
Google Scholar
[11]
Y. Ma, R. Lewicki, M. Razeghi, F. K. Tittel, QEPAS based ppb-level detection of CO and N2O using a high power CW DFB-QCL, Optics Express 21(1) (2013) 1008–1019.
DOI: 10.1364/oe.21.001008
Google Scholar
[12]
V. L. Kasyutich, R. J. Holdsworth, P. A. Martin, Mid-infrared laser absorption spectrometers based upon all-diode laser difference frequency generation and a room temperature quantum cascade laser for the detection of CO, N2O and NO, Applied Physics B 92 (2008).
DOI: 10.1007/s00340-008-3097-0
Google Scholar
[13]
D. Marchenko, J. Mandon, S. M. Cristescu, P. J. F. M. Merkus, F. J. M. Harren, Quantum cascade laser-based sensor for detection of exhaled and biogenic nitric oxide, Applied Physics B 111 (2013) 359–365.
DOI: 10.1007/s00340-013-5341-5
Google Scholar
[14]
B. W. M. Moeskops, H. Naus, S. M. Cristescu, F. J. M. Harren, Quantum cascade laser-based carbon monoxide detection on a second time scale from human breath, Applied Physics B 82 (2006) 649–654.
DOI: 10.1007/s00340-005-2124-7
Google Scholar
[15]
A. O'Keefe, Integrated cavity output analysis of ultra-weak absorption, Chemical Physics Letters 293 (1998) 331–336.
DOI: 10.1016/s0009-2614(98)00785-4
Google Scholar
[16]
A. O'Keefe, J. J. Scherer, J. B. Paul, CW integrated cavity output spectroscopy, Chemical Physics Letters 307 (1999) 343–349.
DOI: 10.1016/s0009-2614(99)00547-3
Google Scholar
[17]
J. B. Paul, L. Lapson, J. G. Anderson, Ultrasensitive absorption spectroscopy with a high-finesse optical cavity and off-axis alignment, Applied Optics 40(27) (2001) 4904–4910.
DOI: 10.1364/ao.40.004904
Google Scholar
[18]
P. Werle, R. Mücke, F. Slemr, The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS), Applied Physics B 57 (1993) 131-139.
DOI: 10.1007/bf00425997
Google Scholar