Terahertz Signal Measurement on a Chiral Metamaterial Using Terahertz Emission Spectroscopy

Article Preview

Abstract:

Terahertz Signal generated from chiral metamaterial due to the second order non-linear process has been observed. Chiral metamaterial used in this research have a periodic square pattern with different depth on a silver film and was fabricated by Focused Ion Beam System. Terahertz emission spectroscopy has been conducted using two amplified 100 fs laser pulses with a central wavelength of 800 nm. The emission will emerge due to an optical rectification process as a result of an intense femtosecond laser pulses radiation on a chiral metamaterial sample. The measurement result clearly shows that the terahertz signal is emitted at 2 THz frequency and sufficiently fit with a square of laser power, which is consistent with an expected optical rectification process.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

125-128

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.B. Pendry, A chiral route to negative refraction, Science, 306 (2004) 1353-1355.

DOI: 10.1126/science.1104467

Google Scholar

[2] S. Zhang, Y.S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, Negative refractive index in chiral metamaterials, Phys. Rev. Lett. 102 (2009) 02391(4).

DOI: 10.1103/physrevlett.102.023901

Google Scholar

[3] A.A. Zharov, I. V Shadrivov, and Y.S. Kivshar, Nonlinear properties of left-handed metamaterials, Phys. Rev. Lett. 91 (2003).

DOI: 10.1103/physrevlett.91.037401

Google Scholar

[4] S. Tomita, Y. Kosaka, H. Yanagi, and K. Sawada, Chiral meta interface: Polarity reversal of ellipticity through double layers consisting of transparent chiral and absorptive achiral media, Phy. Rev. B 87 (2013) 041404 (R).

DOI: 10.1103/physrevb.87.041404

Google Scholar

[5] G. Ramakrishnan, and C.M. Paul, Percolation enhanced generation of terahertz pulses by optical rectification on ultrathin gold films, Optics Letters vol. 36 no. 13 (2011) 2572-2574.

DOI: 10.1364/ol.36.002572

Google Scholar

[6] N. Kanda, K. Konishi, and M. Kuwata-Gonokami, Terahertz wave polarization rotation with double layered metal gratting of complimentary chiral patterns, Optics Express, vol 15 No. 18, (2007) 11117-11121.

DOI: 10.1364/oe.15.011117

Google Scholar

[7] M. Kuwata-Gonokami, Giant Optical Activity in Quasi-Two-Dimensional Planar Nanostructures, Phys. Rev. Lett. 95 (2005) 227401 (4).

DOI: 10.1103/physrevlett.95.227401

Google Scholar

[8] T. Hatano, B. Nishikawa, M. Iwanaga, and T. Ishihara, Optical rectification effect in 1D metallic photonic crystal slabs with asymmetric unit cell, Optics Express vol 16 no. 11 (2008) 8236-8241.

DOI: 10.1364/oe.16.008236

Google Scholar

[9] F. Kadlec, P. Kuzel, and J.L. Countaz, Study of terahertz radiation generated by optical rectification on thin gold films, Optics Letters, vol. 30, No. 11 (2005) 1402-1404.

DOI: 10.1364/ol.30.001402

Google Scholar

[10] J. Nishitani, K. Kozuki, T. Nagashima, and M. Hangyo, Terahertz radiation from coherent antiferromagnetic magnons excited by femtosecond laser pulses, Apply. Phys. Lett. 96 (2010) 221906 (3).

DOI: 10.1063/1.3436635

Google Scholar

[11] H. Husu, R. Siikanen, J. Makitalo, J. Lehtolahti, J. Laukkanen, M. Kuittinen, andM. Kauranen, Metamaterials with tailored nonlinear optical response, Nano Lett. 12, 67 (2012) 3-7.

DOI: 10.1021/nl203524k

Google Scholar

[12] H. Liu, G.X. Li, K.F. Li, S.M. Chen, S.N. Zhu, C.T. Chan, and K.W. Cheah, Linear and nonlinear Fano resonance on two dimensional magnetic metamaterials, Phys. Rev. B 84 (2011) 235437 (4).

DOI: 10.1103/physrevb.84.235437

Google Scholar

[13] F. Kadlec, P. Kuzel., and J.L. Coutaz, Study of terahertz radiation generated by optical rectification on thin gold film, Opt. Lett. vol. 30 no. 11 (2005) 1402-1404.

DOI: 10.1364/ol.30.001402

Google Scholar