[1]
W.Q. Meeker and A.E. Luis, Statistical Methods for Reliability Data. New York: John Willey. (1998).
Google Scholar
[2]
W. R. Blishke, Reliability: Modelling, Prediction, and Optimisation. New York: John Willey, (2000).
Google Scholar
[3]
B.F. Yousif, A. Shalwan, C.W. Chin and K.C. Ming, Flexural properties of treated and untreated kenaf/epoxy composites, Materials and Design, vol. 40, p.378–385, (2012).
DOI: 10.1016/j.matdes.2012.04.017
Google Scholar
[4]
M. Ramesh, K. Palanikumar and K. Hemachandra Reddy, Mechanical property evaluation of sisal–jute–glass fiber reinforced polyester composites, Composites, part B 48, p.1–9, (2013).
DOI: 10.1016/j.compositesb.2012.12.004
Google Scholar
[5]
P. Noorunnisa Khanam et al, Sisal/carbon fibre reinforced hybrid composites: tensile, flexural and chemical resistance properties, Journal of Polymer Environment, vol. 18, p.727–733, (2010).
DOI: 10.1007/s10924-010-0210-3
Google Scholar
[6]
M. Jawaida, H.P.S. Abdul Khalil and A. Abu Bakar, Mechanical performance of oil palm empty fruit bunches/jute fibres reinforced epoxy hybrid composites, Materials Science and Engineering, vol. 527, p.7944–7949, (2010).
DOI: 10.1016/j.msea.2010.09.005
Google Scholar
[7]
B. Dauda, S. O. Oyadiji & P. Potluri, Characterising mechanical properties of braided and woven textile compo-site beams, Appl Compos Mater, Vol. 16, p.15–31, (2009).
DOI: 10.1007/s10443-008-9073-3
Google Scholar
[8]
J.F. De Deus, S.N. Monteiro and J.R.M. d'Almeida, Effect of drying, molding pressure, and strain rate on the flexural mechanical behaviour of piassava (Attalea funifera Mart) fiber–polyester composites, Polymer Testing 24: 750–755, (2005).
DOI: 10.1016/j.polymertesting.2005.04.002
Google Scholar
[9]
R. Kaundal, A. Patnaik and A. Satapathy, Comparison of the mechanical and thermo-mechanical properties of un-filled and sic filled short glass polyester composites, Silicon, vol. 4, p.175–188, (2012).
DOI: 10.1007/s12633-012-9121-3
Google Scholar
[10]
L.R. Xu, A. Krishnan, H. Ning and U. Vaidya, A seawater tank approach to evaluate the dynamic failure and durability of E-glass/vinyl ester marine composites, Composites, part B, vol. 43, p.2480–2486, (2012).
DOI: 10.1016/j.compositesb.2011.08.039
Google Scholar
[11]
F. Greskovic, L. Dulebova, B. Duleba and A. Krzyzak, Criteria of maintenance for assessing the suitability of aluminum alloys for the production of interchangeable parts injection mold, Eksploatacja i Niezawodnosc-Maintenance And Reliability, vol. 15(4), pp.434-440, (2013).
Google Scholar
[12]
C. Evci and M. Gülgeç, An experimental investigation on the impact response of composite materials, International Journal of Impact Engineering, vol. 43, pp.40-51, (2012).
DOI: 10.1016/j.ijimpeng.2011.11.009
Google Scholar
[13]
N. Sgriccia, M.C. Hawley and M. Misra, Characterization of natural fiber surface and natural composites, Composites Part A: Applied Science and Manufacturing, vol. 39(10), pp.1632-1637, (2008).
DOI: 10.1016/j.compositesa.2008.07.007
Google Scholar
[14]
D. Valis and L. Bartlett, The Failure phenomenon: a critique, International Journal of Performability Engineering, vol. 6(2), pp.181-190, (2010).
Google Scholar
[15]
A. Krzyzak and D. Valis, Selected safety aspects of polymer composites with natural fibres. In: Safety and Reliability: Methodology and Applications. London: Taylor & Francis Group, London, pp.903-909. ISBN 978-1-138-02681-0.
DOI: 10.1201/b17399-131
Google Scholar