[1]
W. Hoburg, Fly-by-wire Control of a Monocopter, Class report, MIT, vol. 16, (2007).
Google Scholar
[2]
A. Rosen and D. Seter, Vertical autorotation of a single-winged samara, Journal of applied mechanics, vol. 58, pp.1064-1071, (1991).
DOI: 10.1115/1.2897683
Google Scholar
[3]
D. Seter and A. Rosen, Stability of the vertical autorotation of a single-winged samara, Journal of applied mechanics, vol. 59, pp.1000-1008, (1992).
DOI: 10.1115/1.2894014
Google Scholar
[4]
D. Seter and A. Rosen, Study of the Vertical Autorotation of a Singlewinged Samara, Biological Reviews, vol. 67, pp.175-197, (1992).
DOI: 10.1111/j.1469-185x.1992.tb01018.x
Google Scholar
[5]
A. Kellas, The guided samara: design and development of a controllable single-bladed autorotating vehicle, Massachusetts Institute of Technology, (2007).
Google Scholar
[6]
E. R. Ulrich, J. S. Humbert, and D. J. Pines, Pitch and heave control of robotic samara micro air vehicles, Journal of Aircraft, vol. 47, pp.1290-1299, (2010).
DOI: 10.2514/1.47197
Google Scholar
[7]
D. J. Pines, J. S. Humbert, J. E. Hubbard, E. R. Ulrich, I. Faruque, and J. Grauer, Control model for robotic samara: Dynamics about a coordinated helical turn, Journal of guidance, control, and dynamics, vol. 33, pp.1921-1927, (2010).
DOI: 10.2514/1.50878
Google Scholar
[8]
E. Ulrich, J. Grauer, D. Pines, J. Hubbard Jr, and J. S. Humbert, Identification of a Robotic Samara Aerodynamic/Multi-Body Dynamic Model, AIAA Guidance, Navigation, and Control Conference, (2010).
DOI: 10.2514/6.2010-8233
Google Scholar
[9]
S. Jameson, K. Fregene, M. Chang, N. Allen, H. Youngren, and J. Scroggins, Lockheed Martin's SAMARAI Nano Air Vehicle: Challenges, Research, and Realization, 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 2012, pp.2012-0584.
DOI: 10.2514/6.2012-584
Google Scholar
[10]
S. Jameson, N. Allen, and H. Youngren, SAMARAI Nano Air Vehicle–A Revolution in Flight, in AUVSI Unmanned Systems North America Conference Proceedings, (2007).
Google Scholar
[11]
E. Ulrich and D. Pines, Planform geometric variation, and its effect on the autorotation efficiency of a mechanical samara, Anuual Forum Proceeedings-AmericalHelicopter Society, 2008, p.1138.
Google Scholar
[12]
C. Hockley and B. Butka, The SamarEye: A Biologically Inspired Autonomous Vehicle, in Proc. 29th IEEE/AIAA Digital Avionics Systems Conference (DASC), 2010, p.5.
DOI: 10.1109/dasc.2010.5655531
Google Scholar
[13]
P. H. Zipfel, Modeling and simulation of aerospace vehicle dynamics, 3rd Edition, AIAA Educational series, (2014).
Google Scholar
[14]
J. G. Leishman, Principles of Helicopter Aerodynamics, 2nd Edition, Cambridge university press, 2006, pp.115-169.
Google Scholar
[15]
www. airfoiltools. com [Cited February 5, 2015].
Google Scholar
[16]
J. Joh D. Anderson, Fundamentals of aerodynamics, 3rd Edition, McGraw-Hill Higher Education, 2001, pp.587-636.
Google Scholar
[17]
J. Roskam, Airplane Design, Preliminary configuration design and integration of the propulsion system, DARcorporation, 1997, pp.225-330.
Google Scholar