[1]
D. R. Kaye, D. Stoianovici and M. Han, Robotic Ultrasound and Needle Guidance for Prostate Cancer Management: Review of the Contemporary Literature, Curr Opin Urol. Vol. 24. 1 (2014) 75-80.
DOI: 10.1097/mou.0000000000000011
Google Scholar
[2]
R. M. Martinez,W. Ptacek, W. Schweitzer and G. Kronreif, CT-Guided, Minimally Invasive, Postmortem Needle Biopsy Using the B-Rob II Needle-Positioning Robot, J Forensic Sci, Vol. 59(2014) 517-521.
DOI: 10.1111/1556-4029.12329
Google Scholar
[3]
D. Stoianovici, C. Kim, G. Srimathveeravalli, P. Sebrecht, D. Petrisor, J. Coleman, S. B. Solomon and H. Hricak, MRI-Safe Robot for Endorectal Prostate Biopsy, IEEE/ASME Transactions on Mechatronics, 19. 4 (2014) 1289-1299.
DOI: 10.1109/tmech.2013.2279775
Google Scholar
[4]
C. Vaida, D. Pisla, A. Szilaghyi, F. Covaciu, D. Cocorean and N. Plitea, The Control System of a Parallel Robot for Brachytherapy, New Trends in Mechanism and Machine Science (2015) 563-571.
DOI: 10.1007/978-3-319-09411-3_60
Google Scholar
[5]
G. Fiard, S. Y. Selmi, E. Promayon, L. Vadcard , J.L. Descotes and J. Troccaz, Initial validation of a virtual-reality learning environment for prostate biopsies: realism matters!, Journal of endourology 28(2014) 453-468.
DOI: 10.1089/end.2013.0454
Google Scholar
[6]
G. Esteban, C. Fernández, M. Á Conde and F. J García-Peñalvo, Playing with SHULE: surgical haptic learning environment, Proceedings of the Second International Conference on Technological Ecosystems for Enhancing Multiculturality. ACM, (2014).
DOI: 10.1145/2669711.2669907
Google Scholar
[7]
P. F. Villard, F.P. Vidal, L. Ap Cenydd, R. Holbrey, S. Pisharody, S. Johnson, A. Bulpitt, N.W. John, F. Bello, D. Gould, Interventional radiology virtual simulator for liver biopsy, International journal of computer assisted radiology and surgery 9. 2 (2014).
DOI: 10.1007/s11548-013-0929-0
Google Scholar
[8]
T. K. Podder et al., AAPM and GEC-ESTRO guidelines for image-guided robotic brachytherapy: Report of Task Group 192, Medical physics 41. 10 (2014) 101501-101527.
DOI: 10.1118/1.4895013
Google Scholar
[9]
S. Butnariu, F. Gîrbacia and A. Orman, Methodology for 3D reconstruction of objects for teaching virtual restoration, International Journal of Computer Science, 3(2013) 16-21.
Google Scholar
[10]
G. Resconi, A. Borboni, R. Faglia and M. Tiboni, Kinematics in robotics by the morphogenetic neuron, Lecture Notes in Computer Science, vol. 2178 LNCS (2001 352-368).
DOI: 10.1007/3-540-45654-6_28
Google Scholar
[11]
A. Chellali, C. Dumas and I. Milleville-Pennel, Haptic communication to support biopsy procedures learning in virtual environments, Presence: Teleoperators and Virtual Environments 22 (2013) 470-489.
DOI: 10.1162/pres_a_00128
Google Scholar
[12]
G. Srimathveeravalli, C. Kim, D. Petrisor, R. Ezell, J. Coleman, H. Hricak, S. B. Solomon and D. Stoianovici, MRI-safe robot for targeted transrectal prostate biopsy: Animal experiments, BJU International 113 (2014) 977-985.
DOI: 10.1111/bju.12335
Google Scholar
[13]
S. Jiang, W. Feng, J. Lou, Z. Yang, J. Liu and J. Yang, Modelling and control of a five-degrees-of-freedom pneumatically actuated magnetic resonance-compatible robot, International Journal of Medical Robotics and Computer Assisted Surgery 10 (2014).
DOI: 10.1002/rcs.1524
Google Scholar
[14]
Information on Jaco serial robot: http: /kinovarobotics. com.
Google Scholar
[15]
Information on IKFast software library: http: /openrave. org/docs/0. 8. 2/openravepy/ikfast.
Google Scholar
[16]
Information on 3D Slicer software library: http: /www. slicer. org.
Google Scholar