A Virtual Reality System for Pre-Planning of Robotic-Assisted Prostate Biopsy

Article Preview

Abstract:

Surgical robots for biopsy procedure require pre-operative planning of trajectories prior to be used for needle guiding procedures. Virtual Reality (VR) technologies allow to simulate robotic biopsy procedure and to generate accurate needle trajectories that avoid vital organs. The paper presents a serial robot which can be used for biopsy procedure and a needle trajectory planning software based on VR technologies. A virtual environment has been modelled and simulations for robotic-assisted biopsy of the prostate have been performed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

585-590

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. R. Kaye, D. Stoianovici and M. Han, Robotic Ultrasound and Needle Guidance for Prostate Cancer Management: Review of the Contemporary Literature, Curr Opin Urol. Vol. 24. 1 (2014) 75-80.

DOI: 10.1097/mou.0000000000000011

Google Scholar

[2] R. M. Martinez,W. Ptacek, W. Schweitzer and G. Kronreif, CT-Guided, Minimally Invasive, Postmortem Needle Biopsy Using the B-Rob II Needle-Positioning Robot, J Forensic Sci, Vol. 59(2014) 517-521.

DOI: 10.1111/1556-4029.12329

Google Scholar

[3] D. Stoianovici, C. Kim, G. Srimathveeravalli, P. Sebrecht, D. Petrisor, J. Coleman, S. B. Solomon and H. Hricak, MRI-Safe Robot for Endorectal Prostate Biopsy, IEEE/ASME Transactions on Mechatronics, 19. 4 (2014) 1289-1299.

DOI: 10.1109/tmech.2013.2279775

Google Scholar

[4] C. Vaida, D. Pisla, A. Szilaghyi, F. Covaciu, D. Cocorean and N. Plitea, The Control System of a Parallel Robot for Brachytherapy, New Trends in Mechanism and Machine Science (2015) 563-571.

DOI: 10.1007/978-3-319-09411-3_60

Google Scholar

[5] G. Fiard, S. Y. Selmi, E. Promayon, L. Vadcard , J.L. Descotes and J. Troccaz, Initial validation of a virtual-reality learning environment for prostate biopsies: realism matters!, Journal of endourology 28(2014) 453-468.

DOI: 10.1089/end.2013.0454

Google Scholar

[6] G. Esteban, C. Fernández, M. Á Conde and F. J García-Peñalvo, Playing with SHULE: surgical haptic learning environment, Proceedings of the Second International Conference on Technological Ecosystems for Enhancing Multiculturality. ACM, (2014).

DOI: 10.1145/2669711.2669907

Google Scholar

[7] P. F. Villard, F.P. Vidal, L. Ap Cenydd, R. Holbrey, S. Pisharody, S. Johnson, A. Bulpitt, N.W. John, F. Bello, D. Gould, Interventional radiology virtual simulator for liver biopsy, International journal of computer assisted radiology and surgery 9. 2 (2014).

DOI: 10.1007/s11548-013-0929-0

Google Scholar

[8] T. K. Podder et al., AAPM and GEC-ESTRO guidelines for image-guided robotic brachytherapy: Report of Task Group 192, Medical physics 41. 10 (2014) 101501-101527.

DOI: 10.1118/1.4895013

Google Scholar

[9] S. Butnariu, F. Gîrbacia and A. Orman, Methodology for 3D reconstruction of objects for teaching virtual restoration, International Journal of Computer Science, 3(2013) 16-21.

Google Scholar

[10] G. Resconi, A. Borboni, R. Faglia and M. Tiboni, Kinematics in robotics by the morphogenetic neuron, Lecture Notes in Computer Science, vol. 2178 LNCS (2001 352-368).

DOI: 10.1007/3-540-45654-6_28

Google Scholar

[11] A. Chellali, C. Dumas and I. Milleville-Pennel, Haptic communication to support biopsy procedures learning in virtual environments, Presence: Teleoperators and Virtual Environments 22 (2013) 470-489.

DOI: 10.1162/pres_a_00128

Google Scholar

[12] G. Srimathveeravalli, C. Kim, D. Petrisor, R. Ezell, J. Coleman, H. Hricak, S. B. Solomon and D. Stoianovici, MRI-safe robot for targeted transrectal prostate biopsy: Animal experiments, BJU International 113 (2014) 977-985.

DOI: 10.1111/bju.12335

Google Scholar

[13] S. Jiang, W. Feng, J. Lou, Z. Yang, J. Liu and J. Yang, Modelling and control of a five-degrees-of-freedom pneumatically actuated magnetic resonance-compatible robot, International Journal of Medical Robotics and Computer Assisted Surgery 10 (2014).

DOI: 10.1002/rcs.1524

Google Scholar

[14] Information on Jaco serial robot: http: /kinovarobotics. com.

Google Scholar

[15] Information on IKFast software library: http: /openrave. org/docs/0. 8. 2/openravepy/ikfast.

Google Scholar

[16] Information on 3D Slicer software library: http: /www. slicer. org.

Google Scholar