[1]
Scoliosis Research Society, SRS Terminology Committee and Working Groupon Spinal Classification. Revised glossary of terms; 2000 http: /www. srs. org.
Google Scholar
[2]
L. Xue-Cheng , J. C. Tassone, J. G. Thometz, in: Development of a 3-Dimensional Back Contour Imaging System for Monitoring Scoliosis Progression in Children, in Spine Deformity 1 (2013) 102-107.
DOI: 10.1016/j.jspd.2012.10.006
Google Scholar
[3]
H. P. Brückner, B. Krüger, H. Blum, in: Reliable orientation estimation for mobile motion capturing in medical rehabilitation sessions based on inertial measurement units, in Microelectronics Journal 45 (2014)1603–1611.
DOI: 10.1016/j.mejo.2014.05.018
Google Scholar
[4]
B. P. Jarochowsky, S. Shin, D. Ryu, and H. Kim, in: Ubiquitous rehabilitation center: An implementation of a wireless sensor network based rehabilitation management system, in Proc. Int. Conf. Convergence Inf. Technol., 2007, p.2349–2358.
DOI: 10.1109/iccit.2007.139
Google Scholar
[5]
S. Bhardway, D. -S. Lee, S. C. Mukhopadhhyay, andW. -Y. Chung, in: Ubiquitous healthcare data analysis and monitoring using multiple wireless sensors for elderly person, in Sens. Transducer J., vol. 90, Special Issue, p.87–99, Apr. (2008).
Google Scholar
[6]
G. Venture, K. Yamane, Y. Nakamura, and T. Yamamoto, in: Identification of human limb viscoelasticity using robotics methods to support the diagnosis of neuromuscular diseases, in Int. J. Robot. Res., vol. 28, no. 10, p.1322–1333, Oct. (2009).
DOI: 10.1177/0278364909103786
Google Scholar
[7]
Y. Nakamura, K. Yamane, Y. Fujita, and I. Suzuki, in: Somatosensory computationfor man-machine interface from motion-capture data and musculoskeletalhuman model, in IEEE Trans. Robot., vol. 21, no. 1, p.58–66, Feb. (2005).
DOI: 10.1109/tro.2004.833798
Google Scholar
[8]
Vicon Oxford Metric Ltd., Vicon Motion Systems, Oxford, U.K. [Online]. Available: http: /www. vicon. com.
Google Scholar
[9]
Y. Chen, J. Lee, R. Parent, and R. Machiraju, in: Markerless monocularmotion capture using image features and physical constraints, in Proc. Comput. Graph. Int., 2005, p.36–46.
DOI: 10.1109/cgi.2005.1500365
Google Scholar
[10]
D. Vlasic, R. Adelsberger, G. Vannucci, J. Barnwell, M. Gross, W. Matusik, and J. Popovic, in Practical motion capture in everyday surroundings, in ACM Trans. Graph. (TOG), vol. 26, no. 3, p.35: 1–35: 9, Jul. (2007).
DOI: 10.1145/1276377.1276421
Google Scholar
[11]
MSP430F5x/6x Microcontroller, http: /www. ti. com.
Google Scholar
[12]
LSM9DS0 Datasheet, August 2013 DocID024763 Rev 2 1/74, http: /www. farnell. com/datasheets/1836727. pdf.
Google Scholar
[13]
A. Gallagher,Y. Matsuoka,A. Wei-Tech, in: An efficient real-time human posture trackingalgorithm using low-cost inertial and magnetic sensors, in Proceedings of IEEE/RSJ InternationalConference on Intelligent Robots and Systems (IROS 2004), Sendai, Japan, 28 September–2October 2004; pp.2967-2972.
DOI: 10.1109/iros.2004.1389860
Google Scholar
[14]
A.M. Sabatini, in: Estimating three-dimensional orientation of human body parts by inertial/magneticsensing, in Sensors 2011, 11, 1489-1525.
DOI: 10.3390/s110201489
Google Scholar
[15]
A.M. Sabatini, in: Kalman-Filter-Based Orientation Determination Using Inertial/Magnetic Sensors: Observability Analysis and Performance Evaluation, inSensors 2011, 11, 9182-9206; doi: 10. 3390/s111009182.
DOI: 10.3390/s111009182
Google Scholar
[16]
J. Vasconcelos, G. Elkaim, C. Silvestre, P. Oliveira, B. Cardeira, in: Geometric Approach to Strapdown Magnetometer Calibration in Sensor Frame, in IEEE Transactions on Aerospace Electronic Systems, Vol. 47, No. 2, April 2011, pp.1293-1306.
DOI: 10.1109/taes.2011.5751259
Google Scholar
[17]
K. Altun, B. Barshan, O. Tuncel, in: Comparative study on classifying human activities with miniature inertial and magnetic sensors, inPattern Recognition 43 (2010) 3605–3620.
DOI: 10.1016/j.patcog.2010.04.019
Google Scholar