Design of a Scoliosis Monitoring System Using Inertial Sensors

Article Preview

Abstract:

This paper presents the design of an innovative system for the diagnosis and treatment of spine disorders, in particular, the scoliosis. The product consists in a mechatronic device that is able to measure in real time the instantaneous position of the human spine, facilitating a precise diagnosis as well as continuous monitoring for prevention and/or treatment of spine disorders.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

597-602

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Scoliosis Research Society, SRS Terminology Committee and Working Groupon Spinal Classification. Revised glossary of terms; 2000 http: /www. srs. org.

Google Scholar

[2] L. Xue-Cheng , J. C. Tassone, J. G. Thometz, in: Development of a 3-Dimensional Back Contour Imaging System for Monitoring Scoliosis Progression in Children, in Spine Deformity 1 (2013) 102-107.

DOI: 10.1016/j.jspd.2012.10.006

Google Scholar

[3] H. P. Brückner, B. Krüger, H. Blum, in: Reliable orientation estimation for mobile motion capturing in medical rehabilitation sessions based on inertial measurement units, in Microelectronics Journal 45 (2014)1603–1611.

DOI: 10.1016/j.mejo.2014.05.018

Google Scholar

[4] B. P. Jarochowsky, S. Shin, D. Ryu, and H. Kim, in: Ubiquitous rehabilitation center: An implementation of a wireless sensor network based rehabilitation management system, in Proc. Int. Conf. Convergence Inf. Technol., 2007, p.2349–2358.

DOI: 10.1109/iccit.2007.139

Google Scholar

[5] S. Bhardway, D. -S. Lee, S. C. Mukhopadhhyay, andW. -Y. Chung, in: Ubiquitous healthcare data analysis and monitoring using multiple wireless sensors for elderly person, in Sens. Transducer J., vol. 90, Special Issue, p.87–99, Apr. (2008).

Google Scholar

[6] G. Venture, K. Yamane, Y. Nakamura, and T. Yamamoto, in: Identification of human limb viscoelasticity using robotics methods to support the diagnosis of neuromuscular diseases, in Int. J. Robot. Res., vol. 28, no. 10, p.1322–1333, Oct. (2009).

DOI: 10.1177/0278364909103786

Google Scholar

[7] Y. Nakamura, K. Yamane, Y. Fujita, and I. Suzuki, in: Somatosensory computationfor man-machine interface from motion-capture data and musculoskeletalhuman model, in IEEE Trans. Robot., vol. 21, no. 1, p.58–66, Feb. (2005).

DOI: 10.1109/tro.2004.833798

Google Scholar

[8] Vicon Oxford Metric Ltd., Vicon Motion Systems, Oxford, U.K. [Online]. Available: http: /www. vicon. com.

Google Scholar

[9] Y. Chen, J. Lee, R. Parent, and R. Machiraju, in: Markerless monocularmotion capture using image features and physical constraints, in Proc. Comput. Graph. Int., 2005, p.36–46.

DOI: 10.1109/cgi.2005.1500365

Google Scholar

[10] D. Vlasic, R. Adelsberger, G. Vannucci, J. Barnwell, M. Gross, W. Matusik, and J. Popovic, in Practical motion capture in everyday surroundings, in ACM Trans. Graph. (TOG), vol. 26, no. 3, p.35: 1–35: 9, Jul. (2007).

DOI: 10.1145/1276377.1276421

Google Scholar

[11] MSP430F5x/6x Microcontroller, http: /www. ti. com.

Google Scholar

[12] LSM9DS0 Datasheet, August 2013 DocID024763 Rev 2 1/74, http: /www. farnell. com/datasheets/1836727. pdf.

Google Scholar

[13] A. Gallagher,Y. Matsuoka,A. Wei-Tech, in: An efficient real-time human posture trackingalgorithm using low-cost inertial and magnetic sensors, in Proceedings of IEEE/RSJ InternationalConference on Intelligent Robots and Systems (IROS 2004), Sendai, Japan, 28 September–2October 2004; pp.2967-2972.

DOI: 10.1109/iros.2004.1389860

Google Scholar

[14] A.M. Sabatini, in: Estimating three-dimensional orientation of human body parts by inertial/magneticsensing, in Sensors 2011, 11, 1489-1525.

DOI: 10.3390/s110201489

Google Scholar

[15] A.M. Sabatini, in: Kalman-Filter-Based Orientation Determination Using Inertial/Magnetic Sensors: Observability Analysis and Performance Evaluation, inSensors 2011, 11, 9182-9206; doi: 10. 3390/s111009182.

DOI: 10.3390/s111009182

Google Scholar

[16] J. Vasconcelos, G. Elkaim, C. Silvestre, P. Oliveira, B. Cardeira, in: Geometric Approach to Strapdown Magnetometer Calibration in Sensor Frame, in IEEE Transactions on Aerospace Electronic Systems, Vol. 47, No. 2, April 2011, pp.1293-1306.

DOI: 10.1109/taes.2011.5751259

Google Scholar

[17] K. Altun, B. Barshan, O. Tuncel, in: Comparative study on classifying human activities with miniature inertial and magnetic sensors, inPattern Recognition 43 (2010) 3605–3620.

DOI: 10.1016/j.patcog.2010.04.019

Google Scholar