[1]
C. Boutsioukis, T. Lambrianidis, E. Kastrinakis and P. Bekiaroglou, Measurement of pressure and flow rates during irrigation of a root canal ex vivo with three endodontic needles, Int. Endod. J. 40 (2007) 504–513.
DOI: 10.1111/j.1365-2591.2007.01244.x
Google Scholar
[2]
K. W. Falk and C.M. Sedgle, The influence of preparation size on the mechanical efficacy of root canal irrigation in vitro, J. Endod. 31 (2005) 742–745.
DOI: 10.1097/01.don.0000158007.56170.0c
Google Scholar
[3]
D. Nguy and C. Sedgley, The influence of canal curvature on the mechanical efficacy of root canal irrigation in vitro using real-time imaging of bioluminescent bacteria, J. Endod. 32 (2006) 1077–1082.
DOI: 10.1016/j.joen.2006.04.011
Google Scholar
[4]
B.A. Nielsen and J.C. Baumgartner, Comparison of the EndoVac system to needle irrigation of root canals, J. Endod. 33 (2007) 611–615.
DOI: 10.1016/j.joen.2007.01.020
Google Scholar
[5]
K. Gulabivala, Y. -L. Ng, M. Gilbertson and I. Eames, The fluid mechanics of root canal irrigation, Physiol. Meas. 31 (2010) R49–R84.
DOI: 10.1088/0967-3334/31/12/r01
Google Scholar
[6]
N.A. Baker, P.D. Eleazer, R.E. Averback and S. Seltzer, Scanning electron microscopic study of the efficacy of various irrigating solutions, J. Endod. 1 (1975) 127–135.
DOI: 10.1016/s0099-2399(75)80097-5
Google Scholar
[7]
C.M. Sedgley, A.C. Nagel, D. Hall and B. Applegate, Influence of irrigant needle depth in removing bioluminescent bacteria inoculated into instrumented root canals using real-time imaging in vitro, Int. Endod. J. 38 (2005) 97–104.
DOI: 10.1111/j.1365-2591.2004.00906.x
Google Scholar
[8]
C. Boutsioukis, T. Lambrianidis and L. Vasiliadis, Clinical relevance of standardization of endodontic irrigation needle dimensions according to the ISO 9626: 1991 and 9626: 1991/Amd 1: 2001 specification, Int. Endod.J. 40 (2007) 700–706.
DOI: 10.1111/j.1365-2591.2007.01280.x
Google Scholar
[9]
Šnjarić D, Čarija Z, Braut A, Halaji A, Kovačević M, Kuiš D. Irrigation of human prepared root canal– ex vivo based computational fluid dynamics analysis, Croatian Medical Journal 53(5) (2012) 470-479.
DOI: 10.3325/cmj.2012.53.470
Google Scholar
[10]
C. Boutsioukis, T. Lambrianidis and E. Kastrinakis, Irrigant flow within a prepared root canal using various flow rates: a computational fluid dynamics study, Int. Endod. J. 42 (2009) 144–155.
DOI: 10.1111/j.1365-2591.2008.01503.x
Google Scholar
[11]
C. Boutsioukis, B. Verhaagen, M. Versluis, E. Kastrinakis, P. Wesselink, L.W.M. van der Sluis, Evaluation of Irrigant Flow in the Root Canal Using Different Needle Types by an Unsteady Computational Fluid Dynamics Model, J. Endodontics 36(5) (2010).
DOI: 10.1016/j.joen.2009.12.026
Google Scholar
[12]
C. Boutsioukis and A. Kishen, Fluid dynamics of syringe-based irrigation to optimise anti-biofilm efficacy in root-canal disinfection, Roots 4 (2012) 21-31.
Google Scholar
[13]
Y. Gao, M. Haapasalo, Y. Shen, H. Wu, B. Li, D. Ruse and X. Zhou, Development and Validation of a Three-dimensional Computational Fluid Dynamics Model of Root Canal Irrigation, J. Endodontics 35(9) (2009) 1282-1287.
DOI: 10.1016/j.joen.2009.06.018
Google Scholar
[14]
Del Pino C. Herrada and J. Ortega-Casanova, Confined swirling jet impingement on a flat plate at moderate Reynolds numbers, Physics of Fluids 21 (2009) 013601.
DOI: 10.1063/1.3063111
Google Scholar