[1]
V. M. Falkner, S.W. Skan, Some approximate solutions of the boundary layer equations, Philos. Mag. 12 (1931) 865–896.
Google Scholar
[2]
D.H. Hartree, On an equation occurring in Falkner and Skan's approximate treatment of the equations of the boundary layer. Proc. Cambr. Philos. Soc. 33 (1937) 223–239.
DOI: 10.1017/s0305004100019575
Google Scholar
[3]
K.R. Rajagopal, A. S. Gupta, T.Y. Na, A note on the Falkner–Skan flows of a non.
Google Scholar
[4]
Newtonian fluid. Int. J. Non-Linear Mech. 18 (1983) 313–320.
Google Scholar
[5]
A. Asaithambi, A finite-difference method for the Falkner–Skan equation, Appl. Math. Comput. 92 (1998) 135–41.
DOI: 10.1016/s0096-3003(97)10042-x
Google Scholar
[6]
H. Bararnia, E. Ghasemi, S. Soleimani, A.R. Ghotbi, D.D. Ganji, Solution of the Falkner–Skan wedge flow by HPM–Pade'method, Adv. Eng. Softw. 43(2012), 44-52.
DOI: 10.1016/j.advengsoft.2011.08.005
Google Scholar
[7]
R.B. Kudenatti, S.R. Kirsur, L.N. Achala, N.M. Bujurke, Exact solution of two-dimensional MHD boundary layer flow over a semi-infinite flat plate, Commun. Nonlinear Sci. Numer. Simul. 18 (2013), 1151-1161.
DOI: 10.1016/j.cnsns.2012.09.029
Google Scholar
[8]
R. Fazio, Blasius problem and Falkner–Skan model: Töpfer's algorithm and its extension, Comput. Fluids, 73, (2013) 202-209.
DOI: 10.1016/j.compfluid.2012.12.012
Google Scholar
[9]
M. Abdulhameed, R. Roslan, M. Bin Mohamad, A modified homotopy perturbation transform method for transient flow of a third grade fluid in a channel with oscillating motion on the upper wall, J. Comput. Eng. 2014 (2014) 1-11.
DOI: 10.1155/2014/102197
Google Scholar
[10]
G. E. D. Azzam, Radiation effects on the MHD mixed free-forced convective flow past a semi-infinite moving vertical plate for high temperature differences, Phys. Scr. 66 (2002) 71–76.
DOI: 10.1238/physica.regular.066a00071
Google Scholar