[1]
Han, J., Dutta, S., & Ekkad, S. (2013). Gas turbine heat transfer and cooling technology. 2nd Edition. Boca Raton: CRC Press, (2012).
DOI: 10.1201/b13616
Google Scholar
[2]
Goldstein, R. J. (1971). Film cooling. Advances in heat transfer, 7(1), 321-379.
Google Scholar
[3]
Abdullah, K., Funazaki, K., Onodera, H., & Ideta, T. (2012). Experimental investigations on aero-thermal interaction of film cooling airs ejected from multiple holes: shallow hole angle. In Proceeding of ASME Turbo Expo.
DOI: 10.1115/gt2012-68215
Google Scholar
[4]
Ely, M. J., & Jubran, B. A. (2012). Film cooling from short holes with sister hole influence. In Proceeding of ASME Turbo Expo.
DOI: 10.1115/gt2012-68081
Google Scholar
[5]
Cengel, Y. A., & Boles, M. A. Thermodynamics: an engineering approach. Volume 5. New York: McGraw-Hill. (2011).
Google Scholar
[6]
Dhungel, A. (2007). Film cooling from a row of holes supplemented with anti vortex holes. Louisiana State University and Agricultural and Mechanical College: Master's Thesis.
DOI: 10.31390/gradschool_theses.421
Google Scholar
[7]
Ely, M. J., & Jubran, B. A. (2009). A numerical study on active film cooling flow control through the use of sister holes. Louisiana State University and Agricultural and Mechanical College: Master's Thesis.
DOI: 10.32920/ryerson.14658120
Google Scholar
[8]
Funazaki, K. I., Kawabata, H., Takahashi, D., & Okita, Y. (2012). Experimental and numerical studies on leading edge film cooling performance: effects of hole exit shape and freestream turbulence. In Proceeding of ASME Turbo Expo.
DOI: 10.1115/gt2012-68217
Google Scholar
[9]
Huang, S., & Liu, Y. (2012). High rotation number effect on heat transfer in a leading edge cooling channel with three channel orientation. In Proceeding of ASME Turbo Expo.
DOI: 10.1115/gt2012-68389
Google Scholar
[10]
Kröss, B., & Pfitzner, M. (2012). Numerical and experimental investigation on the film cooling effectiveness and temperature fields behind a novel trench configuration at high blowing ratio. In Proceeding of ASME Turbo Expo.
DOI: 10.1115/gt2012-68125
Google Scholar
[11]
Liu, C. L., Zhu, H. R., Zhang, Z. W., & Xu, D. C. (2012). Experimental investigation on the leading edge film cooling of cylindrical and laid-back holes with different hole pitches. International Journal of Heat and Mass Transfer.
DOI: 10.1016/j.ijheatmasstransfer.2012.06.090
Google Scholar
[12]
Liu, K. C. (2009). Blowing ratio effects on film cooling effectiveness. Texas A&M University: Master's thesis.
Google Scholar
[13]
Sakai, E., Takahashi, T., & Agata, Y. (2012). Experimental study on effects of internal ribs and rear bumps on film cooling effectiveness. In Proceeding of ASME Turbo Expo.
DOI: 10.1115/1.4007546
Google Scholar
[14]
Saravanamuttoo, H. I. H., Rogers, G. F. C., Cohen, C., & Straznicky, P. V. (2009). Gas turbine theory. 6th ed. Edinburgh Gate: Pearson Education Ltd.
Google Scholar
[15]
Walsh, P. P., & Fletcher, P. (2004). Gas turbine performance. 2nd ed. Fairfield: Blackwell Science and ASME.
Google Scholar