[1]
A. Di Paola, et al., Photocatalytic activity of nanocrystalline TiO2 (brookite, rutile and brookite-based) powders prepared by thermohydrolysis of TiCl4 in aqueous chloride solutions, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 317, pp.366-376, (2008).
DOI: 10.1016/j.colsurfa.2007.11.005
Google Scholar
[2]
A. M. Luís, et al., Influence of calcination parameters on the TiO2 photocatalytic properties, Materials Chemistry and Physics, vol. 125, pp.20-25, (2011).
DOI: 10.1016/j.matchemphys.2010.08.019
Google Scholar
[3]
P. S. Patil, et al., Structural, electrical and optical properties of TiO2 doped WO3 thin films, Applied Surface Science, vol. 252, pp.1643-1650, (2005).
DOI: 10.1016/j.apsusc.2005.03.074
Google Scholar
[4]
M. Al-Fandi, et al., Chemo-sensitivity and reliability of flagellar rotary motor in a MEMS microfluidic actuation system, Sensors and Actuators B: Chemical, vol. 114, pp.229-238, (2006).
DOI: 10.1016/j.snb.2005.04.032
Google Scholar
[5]
H. Melhem, et al., Direct photocurrent generation from nitrogen doped TiO2 electrodes in solid-state dye-sensitized solar cells: Towards optically-active metal oxides for photovoltaic applications, Solar Energy Materials and Solar Cells.
DOI: 10.1016/j.solmat.2012.08.017
Google Scholar
[6]
S. Biswas, et al., Fabrication of Grätzel solar cell with TiO2/CdS bilayered photoelectrode, Thin Solid Films, vol. 517, pp.1284-1288, (2008).
DOI: 10.1016/j.tsf.2008.06.010
Google Scholar
[7]
G. H. Guai, et al., Tailor and functionalize TiO2 compact layer by acid treatment for high performance dye-sensitized solar cell and its enhancement mechanism, Renewable Energy, vol. 51, pp.29-35, (2013).
DOI: 10.1016/j.renene.2012.08.078
Google Scholar
[8]
Y. Min, et al., Synthesis of novel visible light responding vanadate/TiO2 heterostructure photocatalysts for application of organic pollutants, Chemical Engineering Journal, vol. 175, pp.76-83, (2011).
DOI: 10.1016/j.cej.2011.09.042
Google Scholar
[9]
S. K. Zheng, et al., Photocatalytic activity studies of TiO2 thin films prepared by r. f. magnetron reactive sputtering, Vacuum, vol. 72, pp.79-84, (2003).
DOI: 10.1016/s0042-207x(03)00104-0
Google Scholar
[10]
B. -H. Lee, et al., Synthesis of CeO2/TiO2 nanoparticles by laser ablation of Ti target in cerium (III) nitrate hexahydrate (Ce(NO3)3·6H2O) aqueous solution, Journal of Alloys and Compounds, vol. 509, pp.1231-1235, (2011).
DOI: 10.1016/j.jallcom.2010.09.197
Google Scholar
[11]
H. Lee, et al., The synthesis and coating process of TiO2 nanoparticles using CVD process, Powder Technology, vol. 214, pp.64-68, (2011).
DOI: 10.1016/j.powtec.2011.07.036
Google Scholar
[12]
S. Šegota, et al., Synthesis, characterization and photocatalytic properties of sol–gel TiO2 films, Ceramics International, vol. 37, pp.1153-1160, (2011).
DOI: 10.1016/j.ceramint.2010.10.034
Google Scholar
[13]
N. N. M.Z. Sahdan, S.H. Dahlan, M.E. Mahmoud, U. Hashim, Sol-gel Synthesis of TiO2 Thin Films from In-house Nano-TiO2 Powder, presented at the Advances in Materials Physics and Chemistry Supplement: 2012 world Congress on Engineering and Technology, Beijing, China, (2012).
DOI: 10.4236/ampc.2012.24b005
Google Scholar