[1]
J. S. Jang, S. M. Ji, S. W. Be, H. C. Son, J. S. Lee, optimazation of CdS/TiO2 nanobulk composite photocatalysts for hydrgen Production from Na2S/Na2SO3 aqueous electrolyte solution under visible light (l>420 mm), J. Photoche. and Photobio. A, 188 (2007).
DOI: 10.1016/j.jphotochem.2006.11.027
Google Scholar
[2]
S. Bai, H. Li, Y. Guan, S. Jiang, The enhanced photocatalytic activity of CdS/TiO2 nanocomposites by controlling CdS dispersion on TiO2 nanotubes, Appl. Surf. Sci., 257 (2011) 6406-6409.
DOI: 10.1016/j.apsusc.2011.02.007
Google Scholar
[3]
V. G. Besserguenev, R. J. F. Pereira, M. C. Mateus, I. V. Khmelinskii, R. C. Nicula, E. Burkel, TiO2 Thin Film Synetheses from Coplex Precursors by CVD, its Phisical and Photocatalytic Properties, Int. J. Photoenergy, 5 (2003) 99.
DOI: 10.1155/s1110662x03000205
Google Scholar
[4]
L. J. Meng, V. Teixeira, H. N. Cui, F. Placido, Z. Xu, M. P. DosSanto, A Study of the Optical Properties of Titanium Oxide films Prepared By DC Reactive Magnetron Sputtering, Appl. Surf. Sci., 252 (2006) 7970-7974.
DOI: 10.1016/j.apsusc.2005.10.012
Google Scholar
[5]
P. Singh, A. Kumar, D. Kaur, Substrate effect on texture properties of nanocrystalline TiO2 thin films, Physica B., 403 (2008) 3769-3773.
DOI: 10.1016/j.physb.2008.07.021
Google Scholar
[6]
J. C. Tinco, M. Estrada, G. Romero, Room temperature plasma oxidation mechanism to obtain ultrathin silicon oxide and titanium oxide layers, Microelectron. Reliab, 43 (2009) 895-903.
DOI: 10.1016/s0026-2714(03)00098-2
Google Scholar
[7]
A. D. P. Giacomo, O. De, The effect of oxygen rf discharge on pulsed laser deposition of oxide films, J. Appl. Phys. A 79 (2004) 1405-1407.
DOI: 10.1007/s00339-004-2794-8
Google Scholar
[8]
J. H. Kim, S. Lee, H. S. Im, The effect of target density and its morphology on TiO2 thin films grown on Si(100) by PLD, Applied Surface Science, 151 (1999) 6-16.
DOI: 10.1016/s0169-4332(99)00269-x
Google Scholar
[9]
S. Yamamoto, T. Sumita, Sugiharuto, A. Miyashita, H. Naramoto, Preparation of epitaxial TiO2 films by pulsed laser deposition technique, Thin Solid Films, 401 (2001) 88-93.
DOI: 10.1016/s0040-6090(01)01636-4
Google Scholar
[10]
D. Luca, D. Macovei, C. M. Teodorescu, Characterization of titania thin films prepared by reactive pulsed-laser ablation, Surface Science, 600 (2006) 4342-4346.
DOI: 10.1016/j.susc.2006.01.162
Google Scholar
[11]
N. E. Stankova, I. G. Dimitrov, T. R. Stoyanchov, P. A. Atanasov, Optical and gas sensing properties of thick TiO2 films grown by laser deposition, Appl Surf. Sci., 254 (2007) 1268-1272.
DOI: 10.1016/j.apsusc.2007.08.057
Google Scholar
[12]
G. Balakrishnan, V. R. Bandi, S. M. Rajeswari, N. Balamurugan, R. V. Babu, J. I. Song, Effect of oxygen partial pressure on microstructural and optical properties of titanium oxide thin films prepared by pulsed laser deposition, Mater Rese. Bull., 48 (2013).
DOI: 10.1016/j.materresbull.2013.07.009
Google Scholar
[13]
E. Gyorgy, G. Socol, E. Axente, I.N. Mihailescu, C. Ducu, S. Ciuca, Anatase phase TiO2 thin films obtained by pulsed laser deposition for gas sensing applications, Appl Surf. Sci. 247 (2005) 429-433.
DOI: 10.1016/j.apsusc.2005.01.074
Google Scholar
[14]
H. Lin, A. K. Rumaiz, M. Schulz, D. Wang, R. Rock, C. P. Huang, S. I. Shah, Photocatalytic activity of pulsed laser deposited TiO2 thin films, Mater. Sci. Eng.: B, 151 (2008) 133-139.
DOI: 10.1016/j.mseb.2008.05.016
Google Scholar
[15]
A. K. Mohsin, N. Bidin, Effect of cadmium sulfide thickness on electron beam-deposited titania/cadmium sulfide nanocomposite films, Mat. Sci. Semicon Proce, 24 (2014) 208-214.
DOI: 10.1016/j.mssp.2014.03.036
Google Scholar
[16]
Y. Yuan, T. R. Lee, Contact angle and wetting properties, Surface Science Techniques, Springer, Berlin Heidelberg, 2013, pp.3-34.
Google Scholar
[17]
K. Kubiak, M. Wilson, T. Mathia, P. Carval, Wettability versus roughness of engineering surfaces, Wear, 271 (2011) 523-528.
DOI: 10.1016/j.wear.2010.03.029
Google Scholar