Hydrophilic Indicates Surface Morphology Quality of TiO2/CdS Nanocomposite Film

Article Preview

Abstract:

Engineering and decoration on the surface of metal oxide semiconductor (TiO2) for increasing activity is challenging. Thus a novel method is introduced to determine surface morphology quality subsequently improving the photocatalytic behaviour. TiO2 films are fabricated via laser deposition technique at various CdS thickness. Microstructural characterization and optical behaviours are characterized by felid emission scanning electron microscope (FE-SEM) and atomic force microscope (AFM). The hydrophilic property of TiO2/CdS nanocomposite film (NCF) is examined via contact angle measurements. The grain density is found linearly increased with the contact angle. A mutual relationship is revealed between hydrophilic property and crystallization with respect to the CdS thickness. Thus, surface morphology of nanocomposite quality is quantified based on the hydrophilic measurement

You have full access to the following eBook

Info:

* - Corresponding Author

[1] J. S. Jang, S. M. Ji, S. W. Be, H. C. Son, J. S. Lee, optimazation of CdS/TiO2 nanobulk composite photocatalysts for hydrgen Production from Na2S/Na2SO3 aqueous electrolyte solution under visible light (l>420 mm), J. Photoche. and Photobio. A, 188 (2007).

DOI: 10.1016/j.jphotochem.2006.11.027

Google Scholar

[2] S. Bai, H. Li, Y. Guan, S. Jiang, The enhanced photocatalytic activity of CdS/TiO2 nanocomposites by controlling CdS dispersion on TiO2 nanotubes, Appl. Surf. Sci., 257 (2011) 6406-6409.

DOI: 10.1016/j.apsusc.2011.02.007

Google Scholar

[3] V. G. Besserguenev, R. J. F. Pereira, M. C. Mateus, I. V. Khmelinskii, R. C. Nicula, E. Burkel, TiO2 Thin Film Synetheses from Coplex Precursors by CVD, its Phisical and Photocatalytic Properties, Int. J. Photoenergy, 5 (2003) 99.

DOI: 10.1155/s1110662x03000205

Google Scholar

[4] L. J. Meng, V. Teixeira, H. N. Cui, F. Placido, Z. Xu, M. P. DosSanto, A Study of the Optical Properties of Titanium Oxide films Prepared By DC Reactive Magnetron Sputtering, Appl. Surf. Sci., 252 (2006) 7970-7974.

DOI: 10.1016/j.apsusc.2005.10.012

Google Scholar

[5] P. Singh, A. Kumar, D. Kaur, Substrate effect on texture properties of nanocrystalline TiO2 thin films, Physica B., 403 (2008) 3769-3773.

DOI: 10.1016/j.physb.2008.07.021

Google Scholar

[6] J. C. Tinco, M. Estrada, G. Romero, Room temperature plasma oxidation mechanism to obtain ultrathin silicon oxide and titanium oxide layers, Microelectron. Reliab, 43 (2009) 895-903.

DOI: 10.1016/s0026-2714(03)00098-2

Google Scholar

[7] A. D. P. Giacomo, O. De, The effect of oxygen rf discharge on pulsed laser deposition of oxide films, J. Appl. Phys. A 79 (2004) 1405-1407.

DOI: 10.1007/s00339-004-2794-8

Google Scholar

[8] J. H. Kim, S. Lee, H. S. Im, The effect of target density and its morphology on TiO2 thin films grown on Si(100) by PLD, Applied Surface Science, 151 (1999) 6-16.

DOI: 10.1016/s0169-4332(99)00269-x

Google Scholar

[9] S. Yamamoto, T. Sumita, Sugiharuto, A. Miyashita, H. Naramoto, Preparation of epitaxial TiO2 films by pulsed laser deposition technique, Thin Solid Films, 401 (2001) 88-93.

DOI: 10.1016/s0040-6090(01)01636-4

Google Scholar

[10] D. Luca, D. Macovei, C. M. Teodorescu, Characterization of titania thin films prepared by reactive pulsed-laser ablation, Surface Science, 600 (2006) 4342-4346.

DOI: 10.1016/j.susc.2006.01.162

Google Scholar

[11] N. E. Stankova, I. G. Dimitrov, T. R. Stoyanchov, P. A. Atanasov, Optical and gas sensing properties of thick TiO2 films grown by laser deposition, Appl Surf. Sci., 254 (2007) 1268-1272.

DOI: 10.1016/j.apsusc.2007.08.057

Google Scholar

[12] G. Balakrishnan, V. R. Bandi, S. M. Rajeswari, N. Balamurugan, R. V. Babu, J. I. Song, Effect of oxygen partial pressure on microstructural and optical properties of titanium oxide thin films prepared by pulsed laser deposition, Mater Rese. Bull., 48 (2013).

DOI: 10.1016/j.materresbull.2013.07.009

Google Scholar

[13] E. Gyorgy, G. Socol, E. Axente, I.N. Mihailescu, C. Ducu, S. Ciuca, Anatase phase TiO2 thin films obtained by pulsed laser deposition for gas sensing applications, Appl Surf. Sci. 247 (2005) 429-433.

DOI: 10.1016/j.apsusc.2005.01.074

Google Scholar

[14] H. Lin, A. K. Rumaiz, M. Schulz, D. Wang, R. Rock, C. P. Huang, S. I. Shah, Photocatalytic activity of pulsed laser deposited TiO2 thin films, Mater. Sci. Eng.: B, 151 (2008) 133-139.

DOI: 10.1016/j.mseb.2008.05.016

Google Scholar

[15] A. K. Mohsin, N. Bidin, Effect of cadmium sulfide thickness on electron beam-deposited titania/cadmium sulfide nanocomposite films, Mat. Sci. Semicon Proce, 24 (2014) 208-214.

DOI: 10.1016/j.mssp.2014.03.036

Google Scholar

[16] Y. Yuan, T. R. Lee, Contact angle and wetting properties, Surface Science Techniques, Springer, Berlin Heidelberg, 2013, pp.3-34.

Google Scholar

[17] K. Kubiak, M. Wilson, T. Mathia, P. Carval, Wettability versus roughness of engineering surfaces, Wear, 271 (2011) 523-528.

DOI: 10.1016/j.wear.2010.03.029

Google Scholar