[1]
Ye Zhu, Junchen Chen, Huimin Li, Yongheng Zhu, Jiaqiang Xu, Synthesis of mesoporous SnO2–SiO2composites and their applicationas quartz crystal microbalance humidity sensor, Sensors and Actuators B: Chemical, pp.320-325, (2014).
DOI: 10.1016/j.snb.2013.11.091
Google Scholar
[2]
S.W. Chen O.K. Khor M.W. Liao C.K. Chung, Sensitivity Evolution and Enhancement Mechanism of Porous Anodic Aluminum Oxide Humidity Sensor Using Magnetic Field, Sensors and Actuators B, p.925, (2014).
DOI: 10.1016/j.snb.2014.03.057
Google Scholar
[3]
Shufeng Si , Shuo Li, Zhengqiu Ming, Linpei Jin, Humidity sensors based on ZnO Colloidal nanocrystal clusters, Chemical Physics Letters, pp.288-291, (2010).
DOI: 10.1016/j.cplett.2010.05.013
Google Scholar
[4]
T. Ates, C. Tatar∗, F. Yakuphanoglu, Preparation of semiconductor ZnO powders by sol–gel method: Humidity sensors, Sensors and Actuators A: Physical, pp.153-160, (2013).
DOI: 10.1016/j.sna.2012.11.031
Google Scholar
[5]
Nidhi Verma, SatyendraSingh, RichaSrivastava, B.C. Yadav, Fabrication of iron titanium oxide thin film and its application as opto-electronic humidity and liquefied petroleum gas sensors, Optics & Laser Technology, pp.181-188, (2014).
DOI: 10.1016/j.optlastec.2013.10.007
Google Scholar
[6]
B.C. Yadava, Ramesh C. Yadav, Prabhat K. Dwivedi, Sol–gel processed (Mg–Zn–Ti) oxide nanocomposite film deposited on prism-base as an opto-electronic humidity sensor, Sensors and Actuators B: Chemical, pp.413-419, (2010).
DOI: 10.1016/j.snb.2010.05.046
Google Scholar
[7]
Jing Zhao, Yinping Liu, Xiaowei Li , Geyu Lua, Lu You, Xishuang Liang, Fengmin Liu, Tong Zhang, Yu Du, Highly sensitive humidity sensor based on high surface area mesoporous LaFeO3 prepared by a nanocasting route, Sensors and Actuators B: Chemical, pp.802-809, (2013).
DOI: 10.1016/j.snb.2013.02.077
Google Scholar
[8]
Xiangwei Liu, Rui Wang, Tong Zhanga, Yuan He, Jinchun Tu, Xiaotian Li, Synthesis and characterization of mesoporous indium oxide for humidity-sensing applications, Sensors and Actuators B: Chemical, pp.442-448, (2010).
DOI: 10.1016/j.snb.2010.05.033
Google Scholar
[9]
Zhi Chen∗ and Chi Lu, Humidity Sensors: A Review of Materials and Mechanisms, SENSOR LETTERS, pp.274-295, (2005).
Google Scholar
[10]
Hoang-Si Hong1, Duy-Thach Phan, Gwiy-Sang Chung, High-sensitivity humidity sensors with ZnO nanorods based two-port surface acoustic wave delay line, Sensors and Actuators B: Chemical, pp.1283-1287, (2012).
DOI: 10.1016/j.snb.2012.06.026
Google Scholar
[11]
Fu-Shou Tsai, Shui-Jinn Wang, Enhanced sensing performance of relative humidity sensors using laterally grown ZnO nanosheets, Sensors and Actuators B: Chemical, pp.280-287, (2014).
DOI: 10.1016/j.snb.2013.11.069
Google Scholar
[12]
Mingshui Yao, Fei Ding, Yuebin Cao, Peng Hu, Junmei Fan, Chen Lu, Fangli Yuan, Changyong Shi, Yunfa Chen, Sn doped ZnO layered porous nanocrystals with hierarchicalstructures and modified surfaces for gas sensors, Sensors and Actuators B: Chemical, pp.255-265, (2014).
DOI: 10.1016/j.snb.2014.04.078
Google Scholar
[13]
Hoang-Si Honga, ∗, Gwiy-Sang Chung, Controllable growth of oriented ZnO nanorods using Ga-doped seed layers and surface acoustic wave humidity sensor, Sensors and Actuators B: Chemical, pp.446-451, (2014).
DOI: 10.1016/j.snb.2013.12.120
Google Scholar
[14]
Leilei Gu, Kaibo Zheng, Ying Zhou, Juan Li, Xiaoliang Mo, Greta R. Patzke, Guorong Chen, Humidity sensors based on ZnO/TiO2 core/shell nanorod arrays with enhanced sensitivity, Sensors and Actuators B: Chemical, pp.1-7, (2011).
DOI: 10.1016/j.snb.2010.12.024
Google Scholar
[15]
Jei-Li Hou, Chih-Hung Wua, Ting-Jen Hsueh, Self-biased ZnO nanowire humidity sensor vertically integrated ontriple junction solar cell, Sensors and Actuators B: Chemical, pp.137-141, (2014).
DOI: 10.1016/j.snb.2014.02.073
Google Scholar
[16]
Leping Chen, Jian Zhang, Capacitive humidity sensors based on the dielectrophoretically manipulated ZnO Nanorods, Sensors and Actuators A: Physical, pp.88-93, (2012).
DOI: 10.1016/j.sna.2012.02.030
Google Scholar