[1]
David, S. A., Vitek, J. M. & Alexander, . D. J.: Embrittlement of austenitic stainless steel welds. Journal of Nondestructive Evaluation, 15, 1996, (3 – 4. ISSN 0173-4862), p.129 – 136.
DOI: 10.1007/bf00732040
Google Scholar
[2]
Lippold, J. C. & Kotecki, D. J.: Welding metallurgy and weldability of stainless steel. New Jersey, John Wiley & Sons, 2005, ISBN 0-471-47379-0.
Google Scholar
[3]
Hrivnak, I., . Theory of weldaibity of metals and alloys, Elsevier Science Ltd., (1992).
Google Scholar
[4]
Kearns, W. H. & et al.: Welding handbook Vol. 4 Metals and their weldability. 7 ed. Miami: AWS, 1997, ISBN 0-87171-218-1.
Google Scholar
[5]
ATI Nuclear Energy, 2012. ATI 304B7 P/MTM Alloy, Technical Data Sheet. [Online] Available at: http: /www. atisustainablenuclearenergy. com, [Cit. 05 10 2012].
Google Scholar
[6]
Smith, R. J.,: Borated stainless steel Joining technology, s. l.: Electric power Research Institute, (1994).
Google Scholar
[7]
Robino, C. V. & Cieslak, . M. J.,: Fusion welding of advanced borated stainless steels, No. CRADA #CR1042, Albuquerque: Sandia National Laboratories, (1994).
DOI: 10.2172/10183280
Google Scholar
[8]
Martin, J. W.: Effects of Processing and Microstructure on the Mechanical Properties of Boron-containing austenitic stainless steel. Waste Management Symposia, p.293 – 302., (1989).
Google Scholar
[9]
Brown, R. S.: Waste Management Symposia. Borated stainless steels (ASTM A887-88) a comparison of grade A – Neutrosorb Plus and grade B NeutrosorbTM, s. 657 – 664, (1991).
Google Scholar
[10]
Drimal D., Kolenic F.: Laser beam welding of borated austenitic stainless steel produced by powder metallurgy and casted slab, Zvarac, Vol 10, No. 1, 2013, ISSN 1336-5045.
DOI: 10.4028/www.scientific.net/amm.775.138
Google Scholar
[11]
Drimal D., Kolenic F.: The effect of initial temperature of BM on corrosion resistance of laser penetration passes on boron-alloyed stainless steel, Zvarac, Vol 8, No. 2, 2011, ISSN 1336-5045.
Google Scholar