First-Principles Study of Structural and Vibrational Properties of α-SiO2 under Pressure

Article Preview

Abstract:

Using first principles approach, we present the structural, vibrational and dielectric properties of α-SiO2. The calculations have been carried out within the density functional perturbation theory and linear response formalism using the norm-concerving pseudopotentials and a plane wave basis. All the vibrational modes identified are in good agreement with experiment. The calculated infrared spectra are also in good agreement with available experimental results both for the positions and the intensities of the main peaks. We find that the modes Eu7 and A2u4 splits in two respectively at high hydrostaticpressures. Then we calculate the infrared spectra under high pressure of different orientations. The vibrational modes in different phase transitions are reported and discussed respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

191-196

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Pasquarello and R. Car, Phys. Rev. Lett. 79, 1766 (1997).

Google Scholar

[2] P. Umari. X. Gonze, and A. Pasquarello, Phys. Rev. Lett. 90, 027401 (2003).

Google Scholar

[3] P. Umari, A. Pasquarello, and A. Dal Corso, Phys. Rev. B 63, 094305 (2001).

Google Scholar

[4] M. Lazzeri and E mauri, Phys. Rev. Lett. 90, 036401 (2003).

Google Scholar

[5] M. Ocana, V. Fornes, J. V. Garcia-Ramos and C. J. Serna, Phys. Chem. Minerals14, 527 (1987).

Google Scholar

[6] P. T. T. Wong, D. J. Moffatt and F. L. Baudais, Applied Spectroscopy 39, 14 (1985).

Google Scholar

[7] I. Ohno, Phys. Chem. Minerals 17, 371 (1990).

Google Scholar

[8] M. A. Carpenter, E. K. H. Salje, A. Graeme-Barber, American Mineralogist 83, 2 (1998).

Google Scholar

[9] I. Kh. Abdukadyrova, Neorganicheskie Materialy, 42, 2 (2006).

Google Scholar

[10] Y. F. Liang, C. R. Miranda and S. Scandolo, J. Chem. Phys. 125, 194524 (2006).

Google Scholar

[11] T. Shan, B. D. Devine, J. M. Hawkins, Phys. Rev. B. 82, 235302 (2010).

Google Scholar

[12] S. S. Moiseev, V. A. Petrov, and S. V. Stepanov, High Temperature 44, 5 (2006).

Google Scholar

[13] E. K. Chang, M. Rohlfing and S. G. Louie, Phys. Rev. Lett. 85, 12 (2000).

Google Scholar

[14] M. Hemmati and C. Austen Angell, Phys. Rev. Lett. 77, 19 (1996).

Google Scholar

[15] Segall, M.D., Lindan, P.J.D., Probert, M.J., Pickard, C.J., Hasnip, P.J., Clark, S.J., Payne, M.C.: J. Phys. Condens. Matter14, 2717 (2002).

DOI: 10.1088/0953-8984/14/11/301

Google Scholar

[16] Clark, S.J., Segall, M.D., Pickard, C.J., Hasnip, P.J., Probert, M.I.J., Refson, K., Payne, M.C.: Z. Kristallogr. 220, 567 (2005).

DOI: 10.1524/zkri.220.5.567.65075

Google Scholar

[17] J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).

Google Scholar

[18] D. M ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980).

Google Scholar

[19] H. J. Monkhorst and J. D. Pack, Phys. Rev. Lett. B 13, 5188 (1976).

Google Scholar

[20] A.F. Wright and M. S. Lehmann, J. Solid State Chem. 36, 371(1981).

Google Scholar

[21] J. D. Jorgensen, J. Appl. Phys. 49, 5473 (1978).

Google Scholar

[22] H. d'Amour, W. Denner, and H. Schulz, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. B35, 550 (1979).

DOI: 10.1107/s056774087900412x

Google Scholar

[23] L. Levien, C. T. Prewitt, and D. J. Weidner, Am. Mineral. 65, 920 (1980).

Google Scholar

[24] R. M. Hazen, L. W. Finger, R. J. Hemley, and H. K. Mao, Solid State Commun. 72, 507 (1989).

Google Scholar

[25] J. Glinnemann, Jr., H. E. King, Jr., H. Schulz, T. Hahn, S. J. L. Placa, and F. Dacol, Z. Kristallogr. 198, 177 (1992).

Google Scholar

[26] F. Gervais and B. Pirious, Phys. Rev. B 11, 3944 (1975).

Google Scholar

[27] K. S. Finnie, J. G. Thompson, and R. L. Withers, J. Phys. Chem. Solids 55, 23 (1994).

Google Scholar