[1]
J. R. Davis, Handbook of materials for medical devices. Materials Pork, OH: ASM International (2007).
Google Scholar
[2]
P. Erne, M. Schier, and T. J. Resin, The road to bioabsorbable stents: reaching clinical reality? , Cardiovasc. Interv. Radiol, vol. 29, pp.11-16., (2006).
DOI: 10.1007/s00270-004-0341-9
Google Scholar
[3]
M. Staiger, A. Pietak, J. Huadmai, and G. Dias, Magnesium and its alloys as orthopedic biomaterials; A review (J):, Biomaterials vol. 27, (2006).
DOI: 10.1016/j.biomaterials.2005.10.003
Google Scholar
[4]
F. Bronner, M. Forach-Carson, and A. Mikos, Engineering functional skeleton tissues (M) , London; Springer, pp.55-68, (2007).
Google Scholar
[5]
W. Kim , J. Kim, J. Lee, and H. Seok, Influence of Ca on the corrosion properties of Mg for biomaterial. , Mater. Lett. , , vol. 62: 41, pp.46-8, (2008).
Google Scholar
[6]
H. Hermawan, D. Dude, and D. Mantovani, Development of degradable Fe-35Mn alloy for biomedical application. , Adv. Mater. Res. , vol. 15, pp.107-112, (2007).
DOI: 10.4028/www.scientific.net/amr.15-17.107
Google Scholar
[7]
J. chen, B. Liu, Y. H. Wu, and Y. F. Zheng, Comparative in vitro Study on Pure Metals (Fe, Mn, Mg, Zn, and W) as Biodegradable Metals, J. Mater. Sci. Technol., vol. 29, pp.619-627, (2013).
DOI: 10.1016/j.jmst.2013.03.019
Google Scholar
[8]
H. Hermawan, D. Dube, D. Mantovani, and Development of degradable Fe-35Mn alloy for biomedical application., Adv. Mater. Res., vol. 15, p.107–112., (2007).
DOI: 10.4028/www.scientific.net/amr.15-17.107
Google Scholar
[9]
F. Witte, V. Kaese, H. Haferkamp, E. Switzer, A. Meyer-Lindenberg, C. J. Wirth, and H. Windhagen, In vivo corrosion of four magnesium alloys and the associated bone response, Biomaterials, vol. 26, pp.3557-3563, (2005).
DOI: 10.1016/j.biomaterials.2004.09.049
Google Scholar
[10]
M. Peuster, C. Hesse, T. Schloo, C. Fink, P. Beerbaum, and S. C. Von, Long-term biocompatibility of a corrodible peripheral iron stent in the porcine descending aorta. , Biomaterials 27, vol. 27, pp.4955-4962, (2006).
DOI: 10.1016/j.biomaterials.2006.05.029
Google Scholar
[11]
M. Peuster, P. Wohlsein, M. Brugmann, M. Ehlerding, K. Seidler, C. Fink, H. Brauer, A. Fischer, and G. Hausdorf, A novel approach to temporary stenting: degradable cardiovascular stents produced from corrodible metal-results 6–18 months after implantation into New Zealand white rabbits. , Heart., vol. 86, pp.563-569, (2001).
DOI: 10.1136/heart.86.5.563
Google Scholar
[12]
Z. G. Huan, M. A. Leeflang, J. Zhou, L. E. Fratila-Apachitei, and J. Duszczyk, In vitro degradation behavior and cytocompatibility of Mg-Zn-Zr alloys, J Mater Sci Mater Med, vol. 21, pp.2623-35, Sep (2010).
DOI: 10.1007/s10856-010-4111-8
Google Scholar
[13]
D. Vojtech, J. Kubasek, J. Serak, and P. Novak, Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation, Acta Biomater, vol. 7, pp.3515-22, Sep (2011).
DOI: 10.1016/j.actbio.2011.05.008
Google Scholar
[14]
E. Zhang, W. W. He, H. Du, and K. Yang, Microstructure, mechanical properties and corrosion properties of Mg-Zn-Y alloys with low Zn content, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, vol. 488, pp.102-111, Aug 15 (2008).
DOI: 10.1016/j.msea.2007.10.056
Google Scholar
[15]
P. K. Bowen, J. Drelich, and J. Goldman, Zinc Exhibits Ideal Physiological Corrosion Behavior for Bioabsorbable Stents, Adv. Materials, vol. 10, pp.20-26, (2013).
DOI: 10.1002/adma.201300226
Google Scholar
[16]
C. Devirgiliis, P. Zalewski, G. Perozzi, and C. Murgia, Zinc fluxes and zinc transporter genes in chronic diseases (J). , Mutation research/ fundamental and molecular mechanism of mutagenesis, vol. 622, pp.84-93, (2007).
DOI: 10.1016/j.mrfmmm.2007.01.013
Google Scholar
[17]
E. Zhang, L. Yang, J. Xu, and H. Chen, Microstructure, mechanical properties and biocorrosion properties of Mg–Si(–Ca, Zn) alloy for biomedical application., Acta Biomater vol. 6, (2010).
DOI: 10.1016/j.actbio.2009.11.024
Google Scholar
[18]
D. e. a. Hui, Material Chemistry and Physics, vol. 125, pp.568-575, (2011).
Google Scholar
[19]
X. -N. GU and Y. -F. ZHENG, A review on magnesium alloys as biodegradable materials, Front. Mat. Sci. China, vol. 4 p.111–115, (2010).
Google Scholar
[20]
X. Wang, L. Hong-mei, L. Xin-lin, L. Li, and Y. -f. Zheng, effect of cooling rate and composition on microstrcutures and properties of Zn-Mg alloys, Trans. Nonferrous Met. Soc. China, vol. 17, pp. s122-s125, (2007).
Google Scholar
[21]
X. Gu, Y. Zheng, Y. Cheng, S. Zhong, and T. Xi, In vitro corrosion and biocompatibility of binary magnesium alloys, Biomaterials, vol. 30, pp.484-98, Feb (2009).
DOI: 10.1016/j.biomaterials.2008.10.021
Google Scholar
[22]
L. Xu, G. Yu, E. Zhang, F. Pan, and K. Yang, In vivo corrosion behavior of Mg-Mn-Zn alloy for bone implant application, J Biomed Mater Res A, vol. 83, pp.703-11, Dec 1 (2007).
DOI: 10.1002/jbm.a.31273
Google Scholar
[23]
J. Kubasek and D. Vojtech, Zn-based alloys as an alternative biodegradable materials., Metal, vol. 5, (2012).
Google Scholar
[24]
F. Rosalbino, S. D. Negri, A. Saccone, E. Angelina, and S. Delfino, Bio-corrosion characteristics of Mg-Zn-X (X = Ca, Mn, Si) alloys for biomedical application. , J. Mater. Sci.: Mater. Med vol. 21, pp.1091-1098, (2010).
DOI: 10.1007/s10856-009-3956-1
Google Scholar
[25]
G. Song, Control of degradation of biocompatible magnesium alloys. , Corrosion Sci., vol. 49, pp.1697-1701, (2007).
Google Scholar
[26]
S. Zhang, X. Zhang, C. Zhao, J. Li, Y. Song, C. Xie, H. Tao, Y. Zhang, Y. He, Y. Jiang, and Y. Bian, Research on an Mg-Zn alloy as a degradable biomaterial, Acta Biomater, vol. 6, pp.626-40, Feb (2010).
DOI: 10.1016/j.actbio.2009.06.028
Google Scholar
[27]
T. P. Ruedi and W. M. Murphy, Ao Principle of Fracture Management., Tieme Medical Publishers, (2001).
Google Scholar
[28]
C. Ohman, I. Zwierzak, M. Baleani, and M. Viceconti, Human bone hardness seems to depend on tissue type but not on anatomical site in the long bones of an old subject, J Engineering in Medicine, vol. 227, pp.200-206, (2012).
DOI: 10.1177/0954411912459424
Google Scholar
[29]
N. C. Hosking, M. A. Stron, P. H. Shipway, and C. D. Rudd, Corrosion resistance of Zn-Mg coated steel, Corr. Sci. , vol. 49, pp.36-69, (2007).
Google Scholar
[30]
K. Kotah, K. Kojima, H. Ishimoto, and T. Yashiki, Development of corrosion preventive Zn-Mg thermal sprayed steel plate for oil storage tanks., JHPI, vol. 42, p.207, (2004).
Google Scholar
[31]
T. Prosek, A. Nazarov, U. Bexell, D. Thierry, and J. Serak, Corrosion mechanism of model zinc–magnesium alloys in atmospheric conditions, Corrosion Science, vol. 50, pp.2216-2231, (2008).
DOI: 10.1016/j.corsci.2008.06.008
Google Scholar
[32]
N. Kirkland, J. Lespagnol, N. Birbilis, and M. Staiger, Corrosion Science vol. 52, pp.287-291, (2010).
DOI: 10.1016/j.corsci.2009.09.033
Google Scholar
[33]
G. -d. Tang, H. -f. Liu, and Y. -h. Liu, Trans Nonferrous Met. Soc. China. vol. 20, (2010).
Google Scholar
[34]
G. Nietes, K. Kubota, K. Higashi, and F. Hehmann, magnesium-based alloys: In: Cahn RW, Kramer EJ. Editors. , Materials science and technology. VCH Weinheim; , (1996).
Google Scholar