Review on Zn-Based Alloys as Potential Biodegradable Medical Devices Materials

Article Preview

Abstract:

For the past few decades, metallic materials that progressively degrade in physiological environment have been receiving attention with aim of finding appropriate biodegradable implant materials. This review focus mechanical and biocorrosion properties of Zn-based alloys that were recently investigated are summarized and discussed. In addition, the strategy for future fabrication to enhance the prospect of these alloys as metallic biodegradable materials is suggested.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

277-281

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. R. Davis, Handbook of materials for medical devices. Materials Pork, OH: ASM International (2007).

Google Scholar

[2] P. Erne, M. Schier, and T. J. Resin, The road to bioabsorbable stents: reaching clinical reality? , Cardiovasc. Interv. Radiol, vol. 29, pp.11-16., (2006).

DOI: 10.1007/s00270-004-0341-9

Google Scholar

[3] M. Staiger, A. Pietak, J. Huadmai, and G. Dias, Magnesium and its alloys as orthopedic biomaterials; A review (J):, Biomaterials vol. 27, (2006).

DOI: 10.1016/j.biomaterials.2005.10.003

Google Scholar

[4] F. Bronner, M. Forach-Carson, and A. Mikos, Engineering functional skeleton tissues (M) , London; Springer, pp.55-68, (2007).

Google Scholar

[5] W. Kim , J. Kim, J. Lee, and H. Seok, Influence of Ca on the corrosion properties of Mg for biomaterial. , Mater. Lett. , , vol. 62: 41, pp.46-8, (2008).

Google Scholar

[6] H. Hermawan, D. Dude, and D. Mantovani, Development of degradable Fe-35Mn alloy for biomedical application. , Adv. Mater. Res. , vol. 15, pp.107-112, (2007).

DOI: 10.4028/www.scientific.net/amr.15-17.107

Google Scholar

[7] J. chen, B. Liu, Y. H. Wu, and Y. F. Zheng, Comparative in vitro Study on Pure Metals (Fe, Mn, Mg, Zn, and W) as Biodegradable Metals, J. Mater. Sci. Technol., vol. 29, pp.619-627, (2013).

DOI: 10.1016/j.jmst.2013.03.019

Google Scholar

[8] H. Hermawan, D. Dube, D. Mantovani, and Development of degradable Fe-35Mn alloy for biomedical application., Adv. Mater. Res., vol. 15, p.107–112., (2007).

DOI: 10.4028/www.scientific.net/amr.15-17.107

Google Scholar

[9] F. Witte, V. Kaese, H. Haferkamp, E. Switzer, A. Meyer-Lindenberg, C. J. Wirth, and H. Windhagen, In vivo corrosion of four magnesium alloys and the associated bone response, Biomaterials, vol. 26, pp.3557-3563, (2005).

DOI: 10.1016/j.biomaterials.2004.09.049

Google Scholar

[10] M. Peuster, C. Hesse, T. Schloo, C. Fink, P. Beerbaum, and S. C. Von, Long-term biocompatibility of a corrodible peripheral iron stent in the porcine descending aorta. , Biomaterials 27, vol. 27, pp.4955-4962, (2006).

DOI: 10.1016/j.biomaterials.2006.05.029

Google Scholar

[11] M. Peuster, P. Wohlsein, M. Brugmann, M. Ehlerding, K. Seidler, C. Fink, H. Brauer, A. Fischer, and G. Hausdorf, A novel approach to temporary stenting: degradable cardiovascular stents produced from corrodible metal-results 6–18 months after implantation into New Zealand white rabbits. , Heart., vol. 86, pp.563-569, (2001).

DOI: 10.1136/heart.86.5.563

Google Scholar

[12] Z. G. Huan, M. A. Leeflang, J. Zhou, L. E. Fratila-Apachitei, and J. Duszczyk, In vitro degradation behavior and cytocompatibility of Mg-Zn-Zr alloys, J Mater Sci Mater Med, vol. 21, pp.2623-35, Sep (2010).

DOI: 10.1007/s10856-010-4111-8

Google Scholar

[13] D. Vojtech, J. Kubasek, J. Serak, and P. Novak, Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation, Acta Biomater, vol. 7, pp.3515-22, Sep (2011).

DOI: 10.1016/j.actbio.2011.05.008

Google Scholar

[14] E. Zhang, W. W. He, H. Du, and K. Yang, Microstructure, mechanical properties and corrosion properties of Mg-Zn-Y alloys with low Zn content, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, vol. 488, pp.102-111, Aug 15 (2008).

DOI: 10.1016/j.msea.2007.10.056

Google Scholar

[15] P. K. Bowen, J. Drelich, and J. Goldman, Zinc Exhibits Ideal Physiological Corrosion Behavior for Bioabsorbable Stents, Adv. Materials, vol. 10, pp.20-26, (2013).

DOI: 10.1002/adma.201300226

Google Scholar

[16] C. Devirgiliis, P. Zalewski, G. Perozzi, and C. Murgia, Zinc fluxes and zinc transporter genes in chronic diseases (J). , Mutation research/ fundamental and molecular mechanism of mutagenesis, vol. 622, pp.84-93, (2007).

DOI: 10.1016/j.mrfmmm.2007.01.013

Google Scholar

[17] E. Zhang, L. Yang, J. Xu, and H. Chen, Microstructure, mechanical properties and biocorrosion properties of Mg–Si(–Ca, Zn) alloy for biomedical application., Acta Biomater vol. 6, (2010).

DOI: 10.1016/j.actbio.2009.11.024

Google Scholar

[18] D. e. a. Hui, Material Chemistry and Physics, vol. 125, pp.568-575, (2011).

Google Scholar

[19] X. -N. GU and Y. -F. ZHENG, A review on magnesium alloys as biodegradable materials, Front. Mat. Sci. China, vol. 4 p.111–115, (2010).

Google Scholar

[20] X. Wang, L. Hong-mei, L. Xin-lin, L. Li, and Y. -f. Zheng, effect of cooling rate and composition on microstrcutures and properties of Zn-Mg alloys, Trans. Nonferrous Met. Soc. China, vol. 17, pp. s122-s125, (2007).

Google Scholar

[21] X. Gu, Y. Zheng, Y. Cheng, S. Zhong, and T. Xi, In vitro corrosion and biocompatibility of binary magnesium alloys, Biomaterials, vol. 30, pp.484-98, Feb (2009).

DOI: 10.1016/j.biomaterials.2008.10.021

Google Scholar

[22] L. Xu, G. Yu, E. Zhang, F. Pan, and K. Yang, In vivo corrosion behavior of Mg-Mn-Zn alloy for bone implant application, J Biomed Mater Res A, vol. 83, pp.703-11, Dec 1 (2007).

DOI: 10.1002/jbm.a.31273

Google Scholar

[23] J. Kubasek and D. Vojtech, Zn-based alloys as an alternative biodegradable materials., Metal, vol. 5, (2012).

Google Scholar

[24] F. Rosalbino, S. D. Negri, A. Saccone, E. Angelina, and S. Delfino, Bio-corrosion characteristics of Mg-Zn-X (X = Ca, Mn, Si) alloys for biomedical application. , J. Mater. Sci.: Mater. Med vol. 21, pp.1091-1098, (2010).

DOI: 10.1007/s10856-009-3956-1

Google Scholar

[25] G. Song, Control of degradation of biocompatible magnesium alloys. , Corrosion Sci., vol. 49, pp.1697-1701, (2007).

Google Scholar

[26] S. Zhang, X. Zhang, C. Zhao, J. Li, Y. Song, C. Xie, H. Tao, Y. Zhang, Y. He, Y. Jiang, and Y. Bian, Research on an Mg-Zn alloy as a degradable biomaterial, Acta Biomater, vol. 6, pp.626-40, Feb (2010).

DOI: 10.1016/j.actbio.2009.06.028

Google Scholar

[27] T. P. Ruedi and W. M. Murphy, Ao Principle of Fracture Management., Tieme Medical Publishers, (2001).

Google Scholar

[28] C. Ohman, I. Zwierzak, M. Baleani, and M. Viceconti, Human bone hardness seems to depend on tissue type but not on anatomical site in the long bones of an old subject, J Engineering in Medicine, vol. 227, pp.200-206, (2012).

DOI: 10.1177/0954411912459424

Google Scholar

[29] N. C. Hosking, M. A. Stron, P. H. Shipway, and C. D. Rudd, Corrosion resistance of Zn-Mg coated steel, Corr. Sci. , vol. 49, pp.36-69, (2007).

Google Scholar

[30] K. Kotah, K. Kojima, H. Ishimoto, and T. Yashiki, Development of corrosion preventive Zn-Mg thermal sprayed steel plate for oil storage tanks., JHPI, vol. 42, p.207, (2004).

Google Scholar

[31] T. Prosek, A. Nazarov, U. Bexell, D. Thierry, and J. Serak, Corrosion mechanism of model zinc–magnesium alloys in atmospheric conditions, Corrosion Science, vol. 50, pp.2216-2231, (2008).

DOI: 10.1016/j.corsci.2008.06.008

Google Scholar

[32] N. Kirkland, J. Lespagnol, N. Birbilis, and M. Staiger, Corrosion Science vol. 52, pp.287-291, (2010).

DOI: 10.1016/j.corsci.2009.09.033

Google Scholar

[33] G. -d. Tang, H. -f. Liu, and Y. -h. Liu, Trans Nonferrous Met. Soc. China. vol. 20, (2010).

Google Scholar

[34] G. Nietes, K. Kubota, K. Higashi, and F. Hehmann, magnesium-based alloys: In: Cahn RW, Kramer EJ. Editors. , Materials science and technology. VCH Weinheim; , (1996).

Google Scholar