An Experiment of Spike Detection Based Mental Task with Ayes Movement Stimuli

Article Preview

Abstract:

In this paper, an experiment of spike detection based mental task with ayes movement stimuli is reported. The approximation of ICA algorithm is required to eliminate artifacts and detect a pike of brain activity according to the given stimuli which are normal, closed, and blinking ayes. A comparison of ICA algorithms based Extended Fourth Order Blind Identification and Algorithm for Multiple Unknown Signal Extraction is tested. The quality of the extracted signals is measured through the value of the signal to interference ratio and signal to distortion ratio. The extracted results indicate that the best spike detection is achieved using AMUSE algorithm.Keywords : EEG , s pike , Independent Component Analysis (ICA).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

87-96

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Naraharisetti, K. V. Removal of ocular artifacts from EEG signal using joint approximate diagonalization o eigen matrices (JADE) and wavelet transform. Canadian Journal on Biomedical Engineering & Technology, 1(4), p.56, July (2010).

Google Scholar

[2] Sanei, S. and Chambers, J. A. EEG Signal Processing. Cardiff university, UK: John Wiley&Sons, Ltd., (2007).

Google Scholar

[3] Berger, H. Uber das elektroenkephalogram des menschen. Archiv fur Psychiatrie und Nervenkrankheiten, 87, 527-570, (1929).

DOI: 10.1007/bf01797193

Google Scholar

[4] S. Choi, A. Cichocki, H. M. Park, S. Y. Lee, Blind Source Separation and Independent Component Analysis, Neural Information Processing - Letters and Reviews Vol. 6, No. 1, January (2005).

Google Scholar

[5] K. V. Naraharisetti, Removal of ocular artifacts from EEG signal using joint approximate diagonalization o eigen matrices (JADE) and wavelet transform, Canadian Journal on Biomedical Engineering & Technology, Vol. 1, No. 4, p.56, July (2010).

Google Scholar

[6] S. Sanei and J. A. Chambers, EEG Signal Processing, Cardiff university, UK: John Wiley&Sons, Ltd., (2007).

Google Scholar

[7] L. Boquete, J. M. R. Ascariz, J. Cantos, R. Barea, Juan Manuel Miguel, S. Ortega, N. Peixoto, A portable wireless biometric multi-channel system, Measurement, 45 pp.1578-1598, (2012).

DOI: 10.1016/j.measurement.2012.02.018

Google Scholar

[8] J. J. Liang, A new approach to classification of brainwaves, , Pattern Recognition, Vol. 22, No. 6, pp.767-774, (1989).

DOI: 10.1016/0031-3203(89)90013-7

Google Scholar

[9] D.V. Moretti, F. Babiloni, F. Carducci, F. Cincotti, E. Remondini, P.M. Rossini, S. Salinari, C. Babiloni, Computerized processing of EEG–EOG–EMG artifacts for multicentricstudies in EEG oscillations and event-related potentials, International Journal of Psychophysiology Vol. 47 p.199–216, (2003).

DOI: 10.1016/s0167-8760(02)00153-8

Google Scholar

[10] A. Finke, A. Lenhardt, Ritter, The MindGame: A P300based brain computer interface game, Neural Networks, Vol. 22, pp.1329-1333, (2009).

DOI: 10.1016/j.neunet.2009.07.003

Google Scholar

[11] P. F. Dieza, S. M. T. Müllerc, V. A. Mutb, E. Laciara, E. Avilab, T. F. B. Filhod, M. S. Filho, Commanding a robotic wheelchair with a high-frequency steady-state visual evoked potential based brain–computer interface, Medical Engineering & Physics, Vol. 35, p.1155–1164, (2013).

DOI: 10.1016/j.medengphy.2012.12.005

Google Scholar

[12] F. Galan, M. Nuttin, E. Lew, P.W. Ferrez, G. Vanacker, J. Philips, J. del R. Millan, A brain-actuated wheelchair: Asynchronous and non-invasive Brain–computer interfaces for continuous control of robots, Clinical Neurophysiology, Vol. 119 p.2159–2169, (2008).

DOI: 10.1016/j.clinph.2008.06.001

Google Scholar

[13] D. Bosnyakova, A. Gabova, G. Kuznetsova, Y. Obukhov, I. Midzyanovskaya, D. Salonin, C. van Rijn, A. Coenen, L. Tuomisto and G. van Luijtelaar, Time–frequency analysis of spike-wave discharges using a modified wavelet transform, Journal of Neuroscience Methods Vol. 154, p.80–88, (2006).

DOI: 10.1016/j.jneumeth.2005.12.006

Google Scholar

[14] H. Hassanpour, B. Boashash, A time-frequency approach for EEG spike detection, Iranica Journal of Energy & Environment, Vol. 2 No. 4, pp.390-395, (2011).

Google Scholar

[15] K. Vijayalakshmi and A. M. Abhishek, Spike detection in epileptic patients EEG data using template matching technique, International Journal of Computer Applications, Vol. 2, No. 6, pp.5-8, (2010).

DOI: 10.5120/675-948

Google Scholar

[16] J. Walters, Williams, and Y. Li, BMICA-Independent Component Analysis Based on B-Spline Mutual Information Estimation for EEG Signals, Canadian Journal on Biomedical Engineering & Technology Vol. 3 No. 4, May (2012).

DOI: 10.5121/sipij.2012.3203

Google Scholar