[1]
Yongqing Zhao. Current situation and development trend of Titanium alloys [J]. Materials China. 2010, 5: 1-8. (In Chinese).
Google Scholar
[2]
Guoqiang Shang, Zhishou Zhu, Hui Chang, Development of ultra-high atrength titanium alloy [J]. Chinese Journal of Rare Metals. 2011, 3: 286-291. (In Chinese).
Google Scholar
[3]
Liang Li, Jianke Sun, Xiangjun Meng. Application status and development prospect of titanium [J]. Titanium Industry Progress, 2004, 21(5): 19-24. (In Chinese).
Google Scholar
[4]
Guangjun Yang, Yongqing Zhao. New advances in Titanium alloy research, processing and applications [J]. Materials Review, 2001, 15(10): 19-21.
Google Scholar
[5]
Yinqi Liu. Effect of Heat-treatment on the microstructure and mechanical property of near-β Titanium alloy [J]. Materials Development and Application, 1999, 14(6): 9-13. (In Chinese).
Google Scholar
[6]
N.G. Jones, R.J. Dashwood, M. Jackson, D. Dye. Development of chevron-shaped a precipitates in Ti–5Al-5Mo-5V-3Cr [J]. Scripta Materialia, 2009, 60: 571-573.
DOI: 10.1016/j.scriptamat.2008.12.010
Google Scholar
[7]
Ali Dehghan-Manshadi, Rian J. Dippenaar. Development of β-phase morphologies during low temperature isothermal heat treatment of a Ti-5Al-5Mo-5V-3Cr alloy[J]. Materials Science and Engineering A, 2011, 528: 1833-1839.
DOI: 10.1016/j.msea.2010.09.061
Google Scholar
[8]
O.M. Ivasishin , P.E. Markovsky, S.L. Semiatin, C.H. Ward. Aging response of coarse and fine-grained β titanium alloys[J]. Materials Science and Engineering A, 2005, 405: 296-305.
DOI: 10.1016/j.msea.2005.06.027
Google Scholar
[9]
Nag S, Banerjee R, Srinivasan R, et al. ω-Assisted nucleation and growth of a precipitates in the Ti-5Al-5Mo-5V-3Cr-0. 5Fe β titanium alloy [J]. Acta Materialia, 2009, 57: 2136-2147.
DOI: 10.1016/j.actamat.2009.01.007
Google Scholar
[10]
N G Jones, R J Dashwood, D. Dye, M Jackson. Thermomechanical processing of Ti-5Al-5Mo-5V-3Cr [J]. Materials Science and Engineering A, 2009, 490: 369-377.
DOI: 10.1016/j.msea.2008.01.055
Google Scholar
[11]
Dongyang Qin, Yafeng Lu, Qian Liu. Tensile deformation and fracture of Ti-5Al-5V-5Mo-3Cr-1. 5Zr-0. 5Fe alloy at room temperature[J]. Materials Science & Engineering A , 2013, 587: 100-109.
DOI: 10.1016/j.msea.2013.08.055
Google Scholar
[12]
Dongyang Qin, Yafeng Lu, Qian Liu. Transgranular shearing introduced brittlement of Ti-5Al-5V-5Mo-3Cr alloy with full lamellar structure at room temperature [J]. Materials Science & Engineering A, 2013, 572: 19-24.
DOI: 10.1016/j.msea.2013.02.029
Google Scholar
[13]
Maosheng Zhi. Dynamic response and microstructure of a new near-beta Ti-5553 alloy [D]. Beijing: Beijing Institute of Technology, 2012. (In Chinese).
Google Scholar
[14]
Denghui Zhao, Lin Wang, Maosheng Zhi. Microstructures and mechanical properties of near-beta Ti-5553 alloy under high strain rate loading [J]. Chinese Journal of Stereology and Image Analysis. 2013, 18 (4): 356-360. (In Chinese).
Google Scholar
[15]
N.G. Jones, R.J. Dashwood, D. Dye, M. Jackson. Thermomechanical processing of Ti-5Al-5Mo-5V-3Cr[J]. Materials Science and Engineering A, 2008, 490: 369-377.
DOI: 10.1016/j.msea.2008.01.055
Google Scholar
[16]
N.G. Jones, R.J. Dashwood, M. Jackson, D. Dye. β Phase decomposition in Ti-5Al-5Mo-5V-3Cr [J]. Acta Materialia, 2009, 57: 3830-3839.
DOI: 10.1016/j.actamat.2009.04.031
Google Scholar
[17]
Yaozu Xu. Martensitic Transformation and Martensite [M]. Beijing: Science Press, 1999, 3: 321-341. (In Chinese).
Google Scholar
[18]
Ge Peng, Zhao Yongqing, Zhou Jian. Strengthening mechanism of beta Titanium alloys [J]. Materials Review, 2005, 19(12): 52-63. (In Chinese).
Google Scholar