Effect of Sintering Temperature on Microstructure and Mechanical Properties of Nanocrystalline Aluminum 5083 Alloy

Article Preview

Abstract:

The bulk nanocrystalline (NC) aluminum (Al) 5083 was synthesized by spark plasma sintering (SPS) technique with low initial pressure of 1 MPa, high holding pressure of 300 MPa and holding time of 4 min at different sintering temperatures, using surface passivated nanopowders. The effect of sintering temperature on microstructure and mechanical properties of the bulk NC Al 5083 were investigated. Results indicate that the density, grain size, the hardness and the compressive strength of the bulk NC Al 5083 increase with an increase in sintering temperature. The mechanical properties of the material are greatly improved due to the fine grain size. The bulk NC Al 5083 sintered at 723 K has the highest micro-hardness of 2.37 GPa and the best compressive strength of 845 MPa.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

113-118

Citation:

Online since:

August 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T.D. Topping, Byungmin Ahn, Y. Li, et al. Metall. Mater. Trans. A 43A (2012) 505-519.

Google Scholar

[2] L Wang, J Zhang, W Jiang. Int. J. Refract. Met. Hard Mat. 39 (2013) 103-112.

Google Scholar

[3] Z.H. Zhang, X.B. Shen, F.C. Wang, et al. T. NONFERR. METAL. SOC. 23 (2013) 2598-2604.

Google Scholar

[4] A. Eldesouky, M. Johnsson, H. Svengren, et al. J. Alloys Compd. 609 (2014) 215-221.

Google Scholar

[5] Z.H. Zhang, F.C. Wang, S.K. Lee, et al. Mater. Sci. Eng., A 523 (2009) 134-138.

Google Scholar

[6] T.B. Holland, I.A. Ovid'ko, H. Wang, A.K. Mukherjee. Mater. Sci. Eng., A 528 (2010) 663-71.

Google Scholar

[7] B.L. Zheng, O. Ertorer, Y. Li, et al. Mater. Sci. Eng., A 528 (2011) 2180-2191.

Google Scholar

[8] G.M. Le, A. Godfrey, N. Hansen. Mater. Des. 49 (2013) 360-367.

Google Scholar

[9] H.B. Chen, K. Tao, B. Yang, et al. T. NONFERR. METAL. SOC. 19 (2009) 1110-1115.

Google Scholar

[10] Z.H. Zhang, X.B. Shen, F.C. Wang, et al. Scripta Mater. 66 (2012) 167-170.

Google Scholar

[11] Z.F. Liu, Z.H. Zhang, J.F. Lu, et al. Mater. Des. 64 (2014) 625-630.

Google Scholar

[12] D. Jeyasimman, K. Sivaprasad, S. Sivasankaran, R. Narayanasamy. Adv. Power Technol. 258 (2014) 189-197.

Google Scholar

[13] C.L. Mendis, H.P. Jhawar, T.T. Sasaki, Mater. Sci. Eng., A 541 (2012) 152-158.

Google Scholar

[14] K. Dash, D. Chaira, B.C. Ray. Mater. Res. Bull. 48 (2013) 2535-2542.

Google Scholar

[15] J.C. Ye, L. Ajdelsztajn, and J.M. Schoenung. Metall. Mater. Trans. A 37A (2006) 2569-2579.

Google Scholar

[16] N. Naga Krishna, R. Tejas, K. Sivaprasad, K. Venkateswarlu. Mater. Des. 52 (2013) 785-790.

Google Scholar

[17] S. Wei, Z.H. Zhang, F.C. Wang. Mater. Sci. Eng., A 560 (2013) 249-255.

Google Scholar