Microstructure and Mechanical Properties of TiB-Ti/Ti-6Al-4V Composites Fabricated by Spark Plasma Sintering

Article Preview

Abstract:

TiB-Ti/Ti-6Al-4V composites were fabricated by spark plasma sintering (SPS) technique under a pressure of 50MPa, with sintering temperature of 1300 °C and heating rate of 100 °C /min. The effect of the TiB content in TiB-Ti composite layer on microstructures and mechanical properties of the TiB-Ti/Ti-6Al-4V composites were investigated. The results indicate that as an advanced welding method, SPS technique provided the excellent welding combination of TiB-Ti and Ti-6Al-4V. The relatively excellent mechanical properties of the joints, including the relative density of 98.6%, micro-hardness of 10.2GPa, fracture strength of 177MPa were achieved as TiB content in TiB-Ti composite layer reaches 50%.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

107-112

Citation:

Online since:

August 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Abkowitz, S.M. Abkowitz, H. Fisher, P.J. Schwartz, JOM. 56 (2004) 37-41.

DOI: 10.1007/s11837-004-0126-2

Google Scholar

[2] T. Saito, JOM. 56 (2004) 33-36.

Google Scholar

[3] R. Izamshah, P .I. MECH. ENG. B-J. ENG. 226 (B4) (2012) 592-605.

Google Scholar

[4] J.C. Williams, Mater. Sci. Eng. B. 263 (1999) 107-111.

Google Scholar

[5] C.J. Boehlert, S. Tamirisakandala, W.A. Curtin, D.B. Miracle, Scripta Mater. 61 (2009) 245-248.

Google Scholar

[6] X.H. Zhang, Q. Xu, J.C. Han, V.L. Kvanin, Mater. Sci. Eng. A. 348 (2003) 41-46.

Google Scholar

[7] A. Jain, R. Pankajavalli, S. Anthonysamy, K. Ananthasivan, R. Babu, V. Ganesan, G.S. Gupta, J. Alloys Compd. 491 (2010) 747–752.

DOI: 10.1016/j.jallcom.2009.11.058

Google Scholar

[8] G.J. Cao, L. Geng, M. Naka, J. Am. Ceram. Soc. 89 (2006) 3836-3838.

Google Scholar

[9] S. Madtha, C. Lee, K.S. Ravi-Chandran, J. Am. Ceram. Soc. 91 (2008) 1319–1321.

Google Scholar

[10] K.B. Panda, K.S. Ravi-Chandran, Acta Mater. 54 (2006) 1641–1657.

Google Scholar

[11] D.H. Z, Z.Y. Fu, W.M. Wang, J.Y. Zhang, Z.A. Munir, P. Liu, Mater. Sci. Eng., A. 535 (2012) 182–188.

Google Scholar

[12] J.Q. Lu, J.N. Qin, Y.F. Chen, Z.W. Zhang, W.J. Lu, D. Zhang, J. Alloys Compd. 490 (2010) 118–123.

Google Scholar

[13] C.J. Boehlert, S. Tamirisakandala, W.A. Curtin, D.B. Miracle, Scripta Mater. 61 (2009) 245–248.

Google Scholar

[14] J.Q. Lu, J.N. Qin, W.J. Lu, Y. Liu, J.J. Gu, D. Zhang, J. Alloys Compd. 469 (2009) 116–122.

Google Scholar

[15] X.H. Zhang, Q. Xu, J.C. Han, V.L. Kvanin, Mater. Sci. Eng. 348 (2003) 41–46.

Google Scholar

[16] J.F. Zhang, L.J. Wang, L. Shi, W. Jiang, L.D. Chen, Scripta Mater. 56 (2007) 241-244.

Google Scholar

[17] M. Omori, Mater. Sci. Eng. A. 287 (2) (2000) 183–188.

Google Scholar

[18] L.J. Wang, W. Jiang, L.D. Chen, J. Mater. Sci. 39 (2004) 4515–4519.

Google Scholar

[19] L.J. Wang, T. Wu, W. Jiang, J.L. Li, L.D. Chen, J. Am. Ceram. Soc. 89 (5) (2006) 1540–1543.

Google Scholar

[20] S. Nakane, Y. Takano, M. Yoshinaka, K. Hirota, O. Yamaguchi, J. Am. Ceram. Soc. 82 (1999) 1627–1628.

Google Scholar

[21] V.I. Dybko, Mater. Sci. 21 (1) (1986) 3078-3084.

Google Scholar

[22] S. Ranganath, Mater. Sci. 32 (1997) 1-16.

Google Scholar