Microstructure and Physical Properties of Nanocrystalline Aluminum Consolidated by Spark Plasma Sintering

Article Preview

Abstract:

Spark plasma sintering (SPS) technique was employed to fabricate nanocrystalline aluminum (Al) with the organic-coated Al nanopowders as raw material. A low initial pressure of 1 MPa and a high holding pressure of 300 MPa were used in the investigation. The effect of sintering temperature on the microstructure and the physical properties of the nanocrystalline Al was investigated. The results demonstrated that both the grain size and the thermal diffusivity of the nanocrystalline Al increase with an increase in sintering temperature. However, the resistivity of the nanocrystalline Al deceases with increasing sintering temperature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

102-106

Citation:

Online since:

August 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.B. Ferguson, M.T. Khorshid, C.S. Kim, et al. Scripta Mater, 2014, 72-73: 13–16.

Google Scholar

[2] S. Bathula, M. Saravanan, A. Dhar. J. Mater. Sci. Technol, 2012, 28: 969–975.

Google Scholar

[3] S. Kundu, D. Roy, R. Bhola, D. Bhattacharjee, et al. Mater. Des, 2013, 50: 370–375.

Google Scholar

[4] Z.H. Zhang, Z.F. Liu, J.F. Lu, X.B. Shen, F.C. Wang, Y.D. Wang. Scripta Mater, 2014, 81: 56–59.

Google Scholar

[5] T.B. Holland, U.A. Tamburini, A.K. Mukherjee. Scripta Mater, 2013, 69: 117–121.

Google Scholar

[6] L. Huang, W.L. Yao, J. Liu, A.K. Mukherjee, J.M. schoenung. Scripta Mater, 2014, 75: 18–21.

Google Scholar

[7] Z.H. Zhang, F.C. Wang, L. Wang, S.K. Lee. Mater. Sci. Eng. A, 2008, 476: 201–205.

Google Scholar

[8] D. Jeyasimman, K. Sivaprasad, S. Sivasankaran, R. Narayanasamy. Powder Technol, 2014, 258: 189-197.

DOI: 10.1016/j.powtec.2014.03.039

Google Scholar

[9] D.A. Shnawah, S.M. Said, H. Arof. J Alloy Compd, 2014, 599: 114-120.

Google Scholar

[10] E.K. Oware, S.M.J. Moysey. J Hydrol, 2014, 517: 471-480.

Google Scholar

[11] P. Christopher, J.I. Gerhard, M. Karaoulis, P. Tsourlos, A. Giannopoulos. J Contam Hydrol, 2014, 162-163: 27-46.

Google Scholar

[12] T.M. Tritt, G.S. Nolas, G.A. Slack, J.S. Cohn. J. Appl. Phys, 1996, 11(63): 8412-8418.

Google Scholar

[13] J. Rupp, R. Birringlr. Phys. Rev, 1989, 36(22): 7888-7890.

Google Scholar

[14] R.M. Mostafizur, M.H.U. Bhuiyan, R. Saidur, A.R. Abdul Aziz. Int J Heat Mass Tran, 2014, 76: 350-356.

DOI: 10.1016/j.ijheatmasstransfer.2014.04.040

Google Scholar

[15] G.D. Xia, H.M. Jiang, R. Liu, Y.L. Zhai. Inter J Therm Sci, 2014, 84 : 118-124.

Google Scholar