Some Possibilities of Hypercumulative Regime of Jet Formations

Article Preview

Abstract:

Basic physical problems of jet formation process on the basis of Lavrentiev-Birkhoff classical scheme are analyzed. It is shown that in process of realization of hypercumulation conditions for jet formation without complete stagnation point involving formation of the inner zone of constant pressure (dead zone), the flow mass is always greater than slug mass, that is unachievable in the known models. Smoothing effect of this zone on the development of different types disturbances, particularly, smoothing Rayleigh-Taylor instability for thin liner may be expected and shown in simulations.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

42-48

Citation:

Online since:

August 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.A. Lavrentyev, Cumulative charge and its action, Mathematical sciences progress, 12 (1957) 41–56.

Google Scholar

[2] G. Birkhoff, D. Mcdougall, E. Pugh and G. Taylor , Explosives with Lined Cavities, Journal of Applied Physics, 6 (1948) 563-582.

DOI: 10.1063/1.1698173

Google Scholar

[3] R.J. Eichelberger, E.M. Pugh, Experimental Verification of the Theory of Jet Formation by Charges with Lined Conical Cavities, Journal of Applied Physics. 5 (1952) 537-542.

DOI: 10.1063/1.1702247

Google Scholar

[4] E. M. Pugh, R. J. Eichelberger, N. Rostoker, Theory of Jet Formation by Charges with Lined Conical Cavities, Journal of Applied Physics, 5 (1963) 532-542.

DOI: 10.1063/1.1702246

Google Scholar

[5] Clark, J. Flash Radiography Applied to Ordnance Problems / J. Clark / Journal of Applied Physics. – 1949. – Vol. 20, No. 1. – P. 263.

DOI: 10.1063/1.1698369

Google Scholar

[6] J. M. Walsh, R. G. Shreffler and F. J. Willig, Limiting Conditions for Jet Formation in High Velocity Collisions, Journal of Applied Physics, 3 (1953) 349-354.

DOI: 10.1063/1.1721278

Google Scholar

[7] W. Koski, F. Luky, R. Shreffler, F. Willig, Fast jets from collapsing cylinders, Journal of Applied Physics, 5 (1952) 1300-1305.

DOI: 10.1063/1.1702063

Google Scholar

[8] Smirnov N.N., Nonstationary formation of a cumulative jet in a dense medium, Moscow University Mechanics Bulletin, Allerton Press, New York, 40 (1985) 1-11.

Google Scholar

[9] Smirnov N.N., Formation of a cumulative jet. Moscow University Mechanics Bulletin, Allerton Press, New York, 38 (1981) 7-12.

Google Scholar

[10] S.K. Godunov, A.A. Deribas, V.I. Mali. Material viscosity effect on jet-formation process in case of metal plates collision, Physics of combustion and explosion, 1 (1976) 3-18.

DOI: 10.1007/bf00742849

Google Scholar

[11] A.G. Ivanov, L.I. Kochkin, L.V. Vasilyev. Explosive rupture of pipes, Physics of combustion and explosion, 1 (1974) 127–132.

Google Scholar

[12] G.R. Cowan and A.H. Holtzman. Flow Configuration in Colliding Plates: Explosive Bonding, J. Appl. Phys, 4 (1963) 928- 937.

Google Scholar

[13] Birkhoff, Q. Riabouchinsky Jubilee Volume Paris. 1 (1954) 1 - 12.

Google Scholar

[14] P.C. Chou, J. Carleone and R.R. Karpp. Criteria for Jet Formation from Impinging Shells and Plates, J. Appl. Phys, 47 (1976) 2975-2981.

DOI: 10.1063/1.323038

Google Scholar

[15] G.R. Cowan and A.H. Holtzman. Flow Configuration in Colliding Plates: Explosive Bonding, J. Appl. Phys, 4 (1963) 928- 937.

Google Scholar

[16] V.F. Minin, I.V. Minin, O.V. Minin, Calculation Experiment Technology. / Chapter in: Computational Fluid Dynamics Technologies and Applications / Eds. by I.V. Minin, O.V. Minin, InTech, Chroatia, (2011).

DOI: 10.5772/686

Google Scholar

[17] V.F. Minin, I.V. Minin, O.V. Minin. Physics of hypercumulation and combined cumulative charges, Gas and wave dynamics, 15 (2013) 281- 316.

DOI: 10.1109/apeie.2012.6629140

Google Scholar

[18] V.F. Minin, I.V. Minin, O.V. Minin. Physics of cumulation: the future of hypercumulative regime of jet formation, Zababakhin Scientific Talks, International Conference, June 02–06 (2014) 37-38.

DOI: 10.4028/www.scientific.net/amm.782.42

Google Scholar

[19] V.F. Minin, I.V. Minin, O.V. Minin. Innovative technology of creating hypercumulative shaped charges jet, 17th International Seminar New Trends in Research of Energetic Materials: Properties of Energetic Materials – Prediction and Reality, University of Pardubice, Pardubice, Czech Republic, April 9–11 (2014).

DOI: 10.4028/www.scientific.net/amm.782.42

Google Scholar

[20] V.F. Minin, I.V. Minin, O.V. Minin. Technique and arrangement (variants) of high-velocity cumulative jets for perforation of boreholes with deep non-slugged channels and large diameter, Patent of R.F. 2412338, published 20. 02. (2011).

Google Scholar

[21] S.A. Kinelovsky, A.V. Sokolov. Experimental modeling of plane jet flows of incompressible ideal fluid, Dynamics of continuous medium. – Novosibirsk, 62 (1983) 59 – 67.

Google Scholar

[22] S.A. Kinelovsky, A.V. Sokolov. Nonsymmetric collision of plane jets of incompressible ideal fluid, PMTF, 1 (1986) 54 –57.

Google Scholar

[23] N.S. Kozin, V.I. Mali, M.V. Rubtsov. Tangential discontinuity in case of bimetal coating collapse, FGV, 4 (1977) 619-625.

Google Scholar

[24] S.A. Kinelovsky, Y.A. Trishin. Symmetric collision of two-layer jets of incompressible ideal fluid, PMTF, 2 (1980) 42 -52.

Google Scholar

[25] V.F. Minin, I.V. Minin, O.V. Minin. Jet-formation criterion in axisymmetrical cumulative charges, Izvestia vuzov. Povolzhsky region. Technical sciences, 6 (2006) 380 - 389.

Google Scholar

[26] V.F. Minin, I.V. Minin, O.V. Minin. Criterium of a Jet Formation on the Axisymmetrical Shaped Charge, International Journal of Modern Applied Physics, 3 (2013) 130-141.

DOI: 10.56431/p-uqnvly

Google Scholar

[27] V.F. Minin, V.E. Fortov, A. V. Bushman, et al., Thermophysical and gasdynamic problems of antimeteorite protection for the Vega, spacecraft, Teplofiz. Vys. Temp., 22 (1984) 964-981.

Google Scholar

[28] I.V. Minin, O.V. Minin. Some new principles of cumulative jets formation, Collected papers of Novosibirsk Military Institute, 7 (1999) 19-26.

Google Scholar

[29] V.F. Minin, I.V. Minin, O.V. Minin. Hypervelocity fragment formation technology for ground-based laboratory tests, Acta Astronautica, 1 (2014) 77-83.

DOI: 10.1016/j.actaastro.2014.07.027

Google Scholar

[30] V.F. Minin, I.V. Minin, O.V. Minin. Maximal velocity of continuous cumulative jet, Vestnik SGGA, 3 (2013) 128-137.

Google Scholar

[31] I.V. Minin, O.V. Minin. Physical aspects of cumulative and fragmentation warheads, Novosibirsk, NGTU (2002) – 86 p.

Google Scholar

[32] V.F. Minin, I.V. Minin, O.V. Minin. Physics of hypercumulation: a review, Proc. of 2013 Int. Forum on special equipments and Eng. Mech. - Science Press, USA, July 10-12, Nanjing, China, (2013) 45-55.

Google Scholar

[33] V.F. Minin, I.V. Minin, O.V. Minin. Physics of hypercumulation: jet formation in shaped charge and ablatively-driven implosion of hollow cones, International Letters of Chemistry, Physics and Astronomy, 3 (2014) 76-86.

DOI: 10.18052/www.scipress.com/ilcpa.22.76

Google Scholar

[34] V.F. Minin, I.V. Minin, O.V. Minin. Physics of hypercumulation and combined shaped charges. – Novosibirsk. – 2013. – 268p. (in Russian).

DOI: 10.1109/apeie.2012.6629140

Google Scholar

[35] C. Wang, F. L. Huang, J. G. Ning, Jet formation and penetration mechanism of W typed shaped charge, Acta Mech Sin. 25 (2009) 107–120.

DOI: 10.1007/s10409-008-0212-8

Google Scholar

[36] V.F. Minin, I.V. Minin, O.V. Minin. The Principle of Forced Jet Formation and any its Applications, Proc. International Workshop on Air Defense Lethality Enhancements and High Velocity Terminal ballistics, 29. Sept. -1 Oct. 1998, Freiburg, Germany, (1998).

Google Scholar