[1]
L. Hernandez, C. Baladron, J. Aguiar, B. Carro, A. Sánchez-Esguevillas, J. Lloret, et al., a survey on electric power demand forecasting: Future trends in smart grids, microgrids and smart buildings, (2013).
DOI: 10.1109/surv.2014.032014.00094
Google Scholar
[2]
H. S. Hippert, C. E. Pedreira, and R. C. Souza, Neural networks for short-term load forecasting: A review and evaluation, Power Systems, IEEE Transactions on, vol. 16, pp.44-55, (2001).
DOI: 10.1109/59.910780
Google Scholar
[3]
F. T. Romero, J. C. J. Hernandez, and W. G. Lopez, Predicting Electricity Consumption Using Neural Networks, Latin America Transactions, IEEE (Revista IEEE America Latina), vol. 9, pp.1066-1072, (2011).
DOI: 10.1109/tla.2011.6129704
Google Scholar
[4]
Y. Yang, J. Wu, Y. Chen, and C. Li, A New Strategy for Short-Term Load Forecasting, in Abstract and Applied Analysis, (2013).
Google Scholar
[5]
A. R. Reis and A. Alves da Silva, Feature extraction via multiresolution analysis for short-term load forecasting, Power Systems, IEEE Transactions on, vol. 20, pp.189-198, (2005).
DOI: 10.1109/tpwrs.2004.840380
Google Scholar
[6]
Y. Chen, P. B. Luh, C. Guan, Y. Zhao, L. D. Michel, M. A. Coolbeth, et al., Short-term load forecasting: similar day-based wavelet neural networks, Power Systems, IEEE Transactions on, vol. 25, pp.322-330, (2010).
DOI: 10.1109/tpwrs.2009.2030426
Google Scholar
[7]
A. S. Pandey, D. Singh, and S. K. Sinha, Intelligent hybrid wavelet models for short-term load forecasting, Power Systems, IEEE Transactions on, vol. 25, pp.1266-1273, (2010).
DOI: 10.1109/tpwrs.2010.2042471
Google Scholar
[8]
C. Guan, P. B. Luh, L. D. Michel, Y. Wang, and P. B. Friedland, Very short-term load forecasting: wavelet neural networks with data pre-filtering, Power Systems, IEEE Transactions on, vol. 28, pp.30-41, (2013).
DOI: 10.1109/tpwrs.2012.2197639
Google Scholar
[9]
Z. Bashir and M. El-Hawary, Applying wavelets to short-term load forecasting using PSO-based neural networks, Power Systems, IEEE Transactions on, vol. 24, pp.20-27, (2009).
DOI: 10.1109/tpwrs.2008.2008606
Google Scholar
[10]
W. Lei and M. Shahidehpour, A hybrid model for integrated day-ahead electricity price and load forecasting in smart grid, Generation, Transmission & Distribution, IET, vol. 8, pp.1937-1950, (2014).
DOI: 10.1049/iet-gtd.2013.0927
Google Scholar
[11]
C. -i. Kim, I. -k. Yu, and Y. Song, Kohonen neural network and wavelet transform based approach to short-term load forecasting, Electric Power Systems Research, vol. 63, pp.169-176, (2002).
DOI: 10.1016/s0378-7796(02)00097-4
Google Scholar
[12]
M. Ning and C. Yunping, An ANN and wavelet transformation based method for short term load forecast, " in Energy Management and Power Delivery, 1998. Proceedings of EMPD, 98. 1998 International Conference on, 1998, pp.405-410.
DOI: 10.1109/empd.1998.702587
Google Scholar
[13]
B. -L. Zhang and Z. -Y. Dong, An adaptive neural-wavelet model for short term load forecasting, Electric Power Systems Research, vol. 59, pp.121-129, (2001).
DOI: 10.1016/s0378-7796(01)00138-9
Google Scholar
[14]
S. G. Mallat, A theory for multiresolution signal decomposition: the wavelet representation, Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 11, pp.674-693, (1989).
DOI: 10.1109/34.192463
Google Scholar
[15]
N. Sovann, P. Nallagownden, and Z. Baharudin, A method to determine the input variable for the neural network model of the electrical system, in Intelligent and Advanced Systems (ICIAS), 2014 5th International Conference on, 2014, pp.1-6.
DOI: 10.1109/icias.2014.6869491
Google Scholar
[16]
H. Demuth and M. Beale, Neural network toolbox user's guide, (2000).
Google Scholar