[1]
B. H. Chowdhury and S. Rahman, A review of recent advances in economic dispatch, Power Systems, IEEE Transactions on, vol. 5, pp.1248-1259, (1990).
DOI: 10.1109/59.99376
Google Scholar
[2]
P. Venkatesh and K. Y. Lee, Multi-Objective Evolutionary Programming for Economic Emission Dispatch problem, in Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century, 2008 IEEE, 2008, pp.1-8.
DOI: 10.1109/pes.2008.4596896
Google Scholar
[3]
M. S. Osman, M. A. Abo-Sinna, and A. A. Mousa, An [var epsilon]-dominance-based multiobjective genetic algorithm for economic emission load dispatch optimization problem, Electric Power Systems Research, vol. 79, pp.1561-1567, (2009).
DOI: 10.1016/j.epsr.2009.06.003
Google Scholar
[4]
S. Hemamalini and S. P. Simon, Emission constrained economic dispatch with valve-point effect using particle swarm optimization, in TENCON 2008 - 2008 IEEE Region 10 Conference, 2008, pp.1-6.
DOI: 10.1109/tencon.2008.4766473
Google Scholar
[5]
K. Y. Lee and F. F. Yang, Optimal reactive power planning using evolutionary algorithms: a comparative study for evolutionary programming, evolutionary strategy, genetic algorithm, and linear programming, Power Systems, IEEE Transactions on, vol. 13, pp.101-108, (1998).
DOI: 10.1109/59.651620
Google Scholar
[6]
S. Muralidharan, K. Srikrishna, and S. Subramanian, A novel pareto-optimal solution for multi-objective economic dispatch problem, Iranian Journal of Electrical and Computer Engineering, vol. 6, pp.112-118, (2007).
Google Scholar
[7]
I. Jacob Raglend, S. Veeravalli, K. Sailaja, B. Sudheera, and D. P. Kothari, Comparison of AI techniques to solve combined economic emission dispatch problem with line flow constraints, International Journal of Electrical Power & Energy Systems, vol. 32, pp.592-598.
DOI: 10.1016/j.ijepes.2009.11.015
Google Scholar
[8]
Y. S. Brar, J. S. Dhillon, and D. P. Kothari, Multiobjective Load Dispatch Based on Genetic-Fuzzy Technique, " in Power Systems Conference and Exposition, 2006. PSCE , 06. 2006 IEEE PES, 2006, pp.931-937.
DOI: 10.1109/psce.2006.296438
Google Scholar
[9]
K. M. Passino, Biomimicry of bacterial foraging for distributed optimization and control, Control Systems Magazine, IEEE, vol. 22, pp.52-67, (2002).
DOI: 10.1109/mcs.2002.1004010
Google Scholar
[10]
B. K. Panigrahi and V. R. Pandi, Bacterial foraging optimisation: Nelder-Mead hybrid algorithm for economic load dispatch, Generation, Transmission & Distribution, IET, vol. 2, pp.556-565, (2008).
DOI: 10.1049/iet-gtd:20070422
Google Scholar
[11]
P. Praveena, K. Vaisakh, and S. R. M. Rao, A Bacterial foraging PSO-DE algorithm for solving dynamic economic dispatch problem with security constraints, in Power Electronics, Drives and Energy Systems (PEDES) & 2010 Power India, 2010 Joint International Conference on, 2010, pp.1-7.
DOI: 10.1109/pedes.2010.5712543
Google Scholar
[12]
Z. Zakaria, T. K. A. Rahman, and E. E. Hassan, Economic load dispatch via an improved Bacterial Foraging Optimization, in Power Engineering and Optimization Conference (PEOCO), 2014 IEEE 8th International, 2014, pp.380-385.
DOI: 10.1109/peoco.2014.6814458
Google Scholar
[13]
E. E. HASSAN, T. K. A. RAHMAN, A. M. MAHROS, M. M. THARWAT, and Z. ZAKARIA, Adaptive Tumbling Bacterial Foraging Optimization For Sustainable Economic Load Dispatch, in Recent Advances in Circuits, Systems and Automatic Control Budapest, Hungary 2013, pp.224-231.
Google Scholar