A dsPIC Microcontroller Based System Identification of Positive Output Buck Boost Converter for Module Mismatch Application

Article Preview

Abstract:

An identification system of multiple-input single-output (MISO) model is developed in controlling dsPIC microcontroller of positive output buck-boost (POBB) converters for module mismatch condition of photovoltaic (PV) system. In particular, the possibility of the scheme is to resolve the mismatch losses from the PV module either during shading or mismatch module occurrences. The MPPT algorithm is simplified by identification approach of indirect incorporated with a simple incremental direct method to form a combined direct and indirect (CoDId) algorithms. Irregular consumption of solar irradiation on a PV module shall step-up or step down the voltage regarding to the desired DC output voltage of POBB converter. This optimized algorithm will ensure that the PV module to kept at maximum power point (MPP), preventing power loss during module mismatch incident in PV module especially during partial shading condition. The simulation and laboratory results for PV module of polycrystalline Mitsubishi PV-AE125MF5N indicate that the proposed model and development of PV system architecture performs well, while the efficiency up to 97.7% at critical of low solar irradiance level. The controlling signal is based on low-cost embedded microcontroller of dsPIC30F Digital Signal Control (DSC).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

106-110

Citation:

Online since:

August 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Arai, J., Kogakuin Univ., Kogakuin ; Iba, K. ; Funabashi, T. ; Nakanishi, Power electronics and its applications to renewable energy in Japan, IEEE Circuits Syst. Mag. IEEE, vol. Vol. 8, no. 3, pp. p.52 – 66, (2008).

DOI: 10.1109/mcas.2008.928420

Google Scholar

[2] W. Kramer, S. Chakraborty, B. Kroposki, and H. Thomas, Advanced Power Electronic Interfaces for Distributed Energy Systems Part 1 : Systems and Topologies Advanced Power Electronic Interfaces for Distributed Energy Systems Part 1 : Systems and Topologies, (2008).

DOI: 10.2172/926102

Google Scholar

[3] G. R. Walker and P. C. Sernia, Cascaded DC–DC Converter Connection of Photovoltaic Modules, IEEE Trans. Power Electron., vol. 19, no. 4, p.1130–1139, Jul. (2004).

DOI: 10.1109/tpel.2004.830090

Google Scholar

[4] Z. Liang, R. Guo, and J. Li, A High-Efficiency PV Module-Integrated DC / DC Converter for PV Energy Harvest in FREEDM Systems, IEEE Trans. Power Electron., vol. 26, no. 3, p.897–909, (2011).

DOI: 10.1109/tpel.2011.2107581

Google Scholar

[5] M. R. Chavoshian, A. Rouholamini, H. R. Naji, R. Fadaeinedjad, and R. Faraji, FPGA-based real time incremental conductance maximum power point tracking controller for photovoltaic systems, IET Power Electron., vol. 7, no. 5, p.1294–1304, May (2014).

DOI: 10.1049/iet-pel.2013.0603

Google Scholar

[6] M. A. Eltawil and Z. Zhao, MPPT Techniques for Photovoltaic Applications, Renew. Sustain. Energy Rev., vol. 25, p.793–813, (2013).

DOI: 10.1016/j.rser.2013.05.022

Google Scholar

[7] C. Hong, T. Ou, and K. Lu, Development of intelligent MPPT ( maximum power point tracking ) control for a grid-connected hybrid power generation system, Energy, vol. 50, p.270–279, (2013).

DOI: 10.1016/j.energy.2012.12.017

Google Scholar

[8] N. D. Kaushika and A. K. Rai, An investigation of mismatch losses in solar photovoltaic cell networks, Energy, J., vol. 32, no. 5, p.755–759, (2007).

DOI: 10.1016/j.energy.2006.06.017

Google Scholar

[9] F. Techniques, J. Chen, P. Shen, and Y. Hwang, A High-Efficiency Positive Buck – Boost Converter With Mode-Select Circuit, IEEE Trans. Power Electron., vol. 28, no. 9, p.4240–4247, (2013).

DOI: 10.1109/tpel.2012.2223718

Google Scholar

[10] M. N. M. Hussain and A. M. Omar, A Novel Combination of Direct and Indirect ( CoDId ) Method of MPPT for Power Losses Reduction, Int. Rev. Model. Simul., vol. 5, no. 3, p.1141–1150, (2012).

Google Scholar

[11] A. Mellit and S. a. Kalogirou, Artificial intelligence techniques for photovoltaic applications: A review, Prog. Energy Combust. Sci., vol. 34, no. 5, p.574–632, Oct. (2008).

DOI: 10.1016/j.pecs.2008.01.001

Google Scholar

[12] V. Salas, E. Olías, A. Barrado, and A. Lázaro, Review of The Maximum Power Point Tracking Algorithms for Stand-Alone Photovoltaic Systems, Sol. Energy Mater. Sol. Cells, vol. 90, no. 11, p.1555–1578, Jul. (2006).

DOI: 10.1016/j.solmat.2005.10.023

Google Scholar

[13] Y. Lee, S. Member, A. Khaligh, and A. Chakraborty, Digital Combination of Buck and Boost Converters to Control a Positive Buck – Boost Converter and Improve the Output Transients, IEEE Trans. Power Electron., vol. 24, no. 5, p.1267–1279, (2009).

DOI: 10.1109/tpel.2009.2014066

Google Scholar

[14] B. K. Bose and L. Fellow, Neural Network Applications in Power Electronics and Motor Drives — An Introduction and Perspective, IEEE Trans. Ind. Electron., vol. 54, no. 1, p.14–33, (2007).

DOI: 10.1109/tie.2006.888683

Google Scholar

[15] O. Tuzun, S. Oktik, S. Altindal, and T. S. Mammadov, Electrical Characterization of Novel Si Solar Cells, Thin Solid Film. J., vol. 511–512, p.258–264, (2006).

DOI: 10.1016/j.tsf.2005.12.104

Google Scholar