[1]
Y. Arai, J., Kogakuin Univ., Kogakuin ; Iba, K. ; Funabashi, T. ; Nakanishi, Power electronics and its applications to renewable energy in Japan, IEEE Circuits Syst. Mag. IEEE, vol. Vol. 8, no. 3, pp. p.52 – 66, (2008).
DOI: 10.1109/mcas.2008.928420
Google Scholar
[2]
W. Kramer, S. Chakraborty, B. Kroposki, and H. Thomas, Advanced Power Electronic Interfaces for Distributed Energy Systems Part 1 : Systems and Topologies Advanced Power Electronic Interfaces for Distributed Energy Systems Part 1 : Systems and Topologies, (2008).
DOI: 10.2172/926102
Google Scholar
[3]
G. R. Walker and P. C. Sernia, Cascaded DC–DC Converter Connection of Photovoltaic Modules, IEEE Trans. Power Electron., vol. 19, no. 4, p.1130–1139, Jul. (2004).
DOI: 10.1109/tpel.2004.830090
Google Scholar
[4]
Z. Liang, R. Guo, and J. Li, A High-Efficiency PV Module-Integrated DC / DC Converter for PV Energy Harvest in FREEDM Systems, IEEE Trans. Power Electron., vol. 26, no. 3, p.897–909, (2011).
DOI: 10.1109/tpel.2011.2107581
Google Scholar
[5]
M. R. Chavoshian, A. Rouholamini, H. R. Naji, R. Fadaeinedjad, and R. Faraji, FPGA-based real time incremental conductance maximum power point tracking controller for photovoltaic systems, IET Power Electron., vol. 7, no. 5, p.1294–1304, May (2014).
DOI: 10.1049/iet-pel.2013.0603
Google Scholar
[6]
M. A. Eltawil and Z. Zhao, MPPT Techniques for Photovoltaic Applications, Renew. Sustain. Energy Rev., vol. 25, p.793–813, (2013).
DOI: 10.1016/j.rser.2013.05.022
Google Scholar
[7]
C. Hong, T. Ou, and K. Lu, Development of intelligent MPPT ( maximum power point tracking ) control for a grid-connected hybrid power generation system, Energy, vol. 50, p.270–279, (2013).
DOI: 10.1016/j.energy.2012.12.017
Google Scholar
[8]
N. D. Kaushika and A. K. Rai, An investigation of mismatch losses in solar photovoltaic cell networks, Energy, J., vol. 32, no. 5, p.755–759, (2007).
DOI: 10.1016/j.energy.2006.06.017
Google Scholar
[9]
F. Techniques, J. Chen, P. Shen, and Y. Hwang, A High-Efficiency Positive Buck – Boost Converter With Mode-Select Circuit, IEEE Trans. Power Electron., vol. 28, no. 9, p.4240–4247, (2013).
DOI: 10.1109/tpel.2012.2223718
Google Scholar
[10]
M. N. M. Hussain and A. M. Omar, A Novel Combination of Direct and Indirect ( CoDId ) Method of MPPT for Power Losses Reduction, Int. Rev. Model. Simul., vol. 5, no. 3, p.1141–1150, (2012).
Google Scholar
[11]
A. Mellit and S. a. Kalogirou, Artificial intelligence techniques for photovoltaic applications: A review, Prog. Energy Combust. Sci., vol. 34, no. 5, p.574–632, Oct. (2008).
DOI: 10.1016/j.pecs.2008.01.001
Google Scholar
[12]
V. Salas, E. Olías, A. Barrado, and A. Lázaro, Review of The Maximum Power Point Tracking Algorithms for Stand-Alone Photovoltaic Systems, Sol. Energy Mater. Sol. Cells, vol. 90, no. 11, p.1555–1578, Jul. (2006).
DOI: 10.1016/j.solmat.2005.10.023
Google Scholar
[13]
Y. Lee, S. Member, A. Khaligh, and A. Chakraborty, Digital Combination of Buck and Boost Converters to Control a Positive Buck – Boost Converter and Improve the Output Transients, IEEE Trans. Power Electron., vol. 24, no. 5, p.1267–1279, (2009).
DOI: 10.1109/tpel.2009.2014066
Google Scholar
[14]
B. K. Bose and L. Fellow, Neural Network Applications in Power Electronics and Motor Drives — An Introduction and Perspective, IEEE Trans. Ind. Electron., vol. 54, no. 1, p.14–33, (2007).
DOI: 10.1109/tie.2006.888683
Google Scholar
[15]
O. Tuzun, S. Oktik, S. Altindal, and T. S. Mammadov, Electrical Characterization of Novel Si Solar Cells, Thin Solid Film. J., vol. 511–512, p.258–264, (2006).
DOI: 10.1016/j.tsf.2005.12.104
Google Scholar