[1]
A. Bhattacharya, V.V. Calmidi, R.L. Mahajan, Thermophysical properties of high porosity metal foams, Int. J. Heat Mass Transfer 45 (2002) 1017-1031.
DOI: 10.1016/s0017-9310(01)00220-4
Google Scholar
[2]
K. Boomsma, D. Poulikakos, The effects of compression and pore size variations on the liquid flow characteristics in metal foams, J. Fluids Eng. 124 (2002) 263-272.
DOI: 10.1115/1.1429637
Google Scholar
[3]
P. Khayargoli, V. Loya, L. P. Lefebvre, M. Medraj, The impact of microstructure on the permeability of metal foams, CSME, (2004) 220-228.
Google Scholar
[4]
F. Topin, J.P. Bonnet, B. Madani, L. Tadrist, Experimental analysis of multiphase flow in metallic foam: Flow Laws, Heat Transfer and Convective Boiling, Adv. Eng. Mater. 8 (2006) 890-899.
DOI: 10.1002/adem.200600102
Google Scholar
[5]
Y.Y. Zhao, T. Fung, L.P. Zhang and F.L. Zhang, Lost carbonate sintering process for manufacturing metal foams, Scripta Mater. 52 (2005) 295–298.
DOI: 10.1016/j.scriptamat.2004.10.012
Google Scholar
[6]
S. Ozan, S. Bilhan, Effect of fabrication parameters on the pore concentration of the aluminum metal foam, manufactured by powder metallurgy process, Int. J. Adv. Manuf. Technol. 7 (2007) 1207-1211.
DOI: 10.1007/s00170-007-1207-5
Google Scholar
[7]
Y.M.Z. Ahmed, M.I. Riad, A.S. Sayed, M.K. Ahlam, H. Shalabi, Correlation between factors controlling preparation of porous copper via sintering technique using experimental design, Powder Technol. 175 (2007) 48–54.
DOI: 10.1016/j.powtec.2007.01.027
Google Scholar
[8]
B. Wang, E. Zhang, On the compressive behavior of sintered porous coppers with low-to-medium porosities—Part II: Preparation and microstructure, Int. J. Mech. Sci. 50 (2008) 550–558.
DOI: 10.1016/j.ijmecsci.2007.08.003
Google Scholar
[9]
A. Faghri, Heat Pipe Science and Technology, First Edition, Taylor & Francis, New York, (1995).
Google Scholar
[10]
M. Kaviany, Principles of Heat Transfer in Porous Media, Second Edition, Springer-Verlag, New York, (1995).
Google Scholar