Review on Performance Enhancement Studies on Solar Dryer

Article Preview

Abstract:

Abundant availability of solar energy and fast depleting fossil fuel reserves have necessitated deployment of large scale solar thermal systems for meeting the space heating, process heating and drying requirements. Researchers worldwide have focused on developing energy efficient dryer capable of enhancing product quality, reduced drying time, high throughput, minimal pre-treatments prior to drying with less energy loss in cost effective way. The present paper surveys literature on performance enhancement studies on solar dryer with a thrust on energy efficiency improvements in solar air collector and a multipurpose solar drying system. The effect of adoption of absorber plate with different types of fins, design modifications, CFD based optimization techniques and incorporation of storage materials have been reviewed. A dual-purpose solar water heating and drying system with phase change material (PCM) is suggested for effective harnessing of solar energy.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

129-133

Citation:

Online since:

August 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Ferreira, L. Matias Gonalves, C. Brasil Maia, Solar drying of a solid waste from steel wire industry, Applied Thermal Engineering. 73 (1, 5) (2014)  104-110.

DOI: 10.1016/j.applthermaleng.2014.07.047

Google Scholar

[2] M. Y. Othman, B. Yatim, K. Sopian and M. N. A. Bakar, Double Pass Photovoltaic-Thermal Solar Collector, Journal of Energy Engineering. 132(3) (2006) 121-126.

DOI: 10.1061/(asce)0733-9402(2006)132:3(121)

Google Scholar

[3] Dhiman, Prashant., Thakur, N. S., Kumar, A. Singh, Satyender, An analytical model to predict the thermal performance of a novel parallel flow packed bed solar airheater, Applied Energy. 88 (2011) 2157-2167.

DOI: 10.1016/j.apenergy.2010.12.033

Google Scholar

[4] Hernández and Quiñonez, Analytical models of thermal performance of solar air heaters of double-parallel flow and double-pass counter flow, Renewable Energy. 55 (2013) 380-391.

DOI: 10.1016/j.renene.2012.12.050

Google Scholar

[5] E. K. Akpınar, and F. Koçyigit, Energy and Exergy Analysis of a New Flat-Plate Solar Air Heater Having Different Obstacles on Absorber Plates, Applied Energy. (2010) 416–421.

DOI: 10.1016/j.apenergy.2010.05.017

Google Scholar

[6] D. Alta, E. Bilgili, C. Ertekin, O. Yaldiz, Experimental investigation of three different solar air heaters: Energy and exergy analyses, Applied Energy. 87 (2010) 2953–2973.

DOI: 10.1016/j.apenergy.2010.04.016

Google Scholar

[7] H. Yeh and C. Ho, Solar air heaters with external recycle, Applied Thermal Engineering. 29 (2009) 1694–1701.

DOI: 10.1016/j.applthermaleng.2008.07.027

Google Scholar

[8] P. Wang, Hong-Yang Guan , Zhen-Hua Liu, Guo-San Wang, Feng Zhao, Hong-Sheng Xiao, High temperature collecting performance of a new all-glass evacuated tubular solar air heater with U-shaped tube heat exchanger, Energy Conversion and Management. 77 (2014).

DOI: 10.1016/j.enconman.2013.08.019

Google Scholar

[9] İ. T. Togrul, D. Pehlιvan, C. Akosman, Development and testing of a solar air-heater with conical concentrator, Renewable Energy. 29 (2) (2004)  263-275.

DOI: 10.1016/s0960-1481(03)00168-x

Google Scholar

[10] C. D. Ho, H. Chang, R. Wang, C. Lin, Performance improvement of a double-pass solar air heater with fins and baffles under recycling operation, Applied Energy. 100 (2012) 155–163.

DOI: 10.1016/j.apenergy.2012.03.065

Google Scholar

[11] A. Kumar, R. P. Saini, J. S. Saini, Experimental investigation on heat transfer and fluid flow characteristics of air flow in a rectangular duct with Multi v-shaped rib with gap roughness on the heated plate, Solar Energy. 86 (6) (2012).

DOI: 10.1016/j.solener.2012.03.014

Google Scholar

[12] A. A. El-Sebaii, S. Aboul-Enein, M. R. I. Ramadan, S. M. Shalaby, B. M. Moharram, Thermal performance investigation of double pass-finned plate solar air heater, Applied Energy. 88 (2011) 1727–1739.

DOI: 10.1016/j.apenergy.2010.11.017

Google Scholar

[13] J. Kasperski,M. Nems, Investigation of thermo-hydraulic performance of concentrated solar air-heater with internal multiple-fin array, Applied Thermal Engineering 58 (2013) 411-419.

DOI: 10.1016/j.applthermaleng.2013.04.018

Google Scholar

[14] A. P. Singh, Varun, Siddhartha, Heat transfer and friction factor correlations for multiple arc shape roughness elements on the absorber plate used in solar airheaters, Experimental Thermal and Fluid Science. 54 (2014) 117-126.

DOI: 10.1016/j.expthermflusci.2014.02.004

Google Scholar

[15] A. Kumar, J. L. Bhagoria and R. M. Sarviya, Heat Transfer and Friction Correlations for Artificially Roughened Solar Air Heater Duct with Discrete W-Shaped Ribs, Energy Conservation and Management. 50 (2009) 2106-2117.

DOI: 10.1016/j.enconman.2009.01.025

Google Scholar

[16] S. Kumar, R. P. Saini, CFD based performance analysis of a solar air heater duct provided with artificial roughness, Renewable Energy. 34 (5), (2009) 1285-1291.

DOI: 10.1016/j.renene.2008.09.015

Google Scholar

[17] Bhagoria and Yadav, A numerical investigation of square sectioned transverse rib roughened solar air heater, International Journal of Thermal Sciences. 79 (2014) 111-131.

DOI: 10.1016/j.ijthermalsci.2014.01.008

Google Scholar

[18] A. Saxena, Nitin Agarwala, Ghansyham Srivastava, Design and performance of a solar air heater with long term heat storage, Intl. Journal of Heat and Mass Transfer. 60 (2013) 8–16.

DOI: 10.1016/j.ijheatmasstransfer.2012.12.044

Google Scholar

[19] S. Aboul-Enein, A. A. El-Sebaii, M.R.I. Ramadan, H.G. El-Gohary, Parametric study of a solar air heater with and without thermal storage for solar drying applications, Renewable Energy. 21 (3–4) (2000) 505-522.

DOI: 10.1016/s0960-1481(00)00092-6

Google Scholar

[20] C. D. Ho, H. M. Yeh, T. W. Cheng, T. C. Chen, R. C. Wang, The influences of recycle on performance of baffled double-pass flat-plate solar air heaters with internal fins attached, Applied Energy. 86 (2009) 1470–1478.

DOI: 10.1016/j.apenergy.2008.12.013

Google Scholar

[21] S. S. Krishnananth, K. K. Murugavel, Experimental study on double pass solar air heater with thermal energy storage, Journal of King Saud University- Engineering Sciences. 25(2013) 135–140.

DOI: 10.1016/j.jksues.2012.05.004

Google Scholar

[22] V. Shanmugam, E. Natarajan, Experimental study of regenerative desiccant integrated solar dryer with and without reflective mirror, Applied Thermal Engineering. 27, 8–9, (2007) 1543-1551.

DOI: 10.1016/j.applthermaleng.2006.09.018

Google Scholar

[23] T. F. N Thoruwa, C. M Johnstone, A. D Grant, J. E Smith, Novel, low cost CaCl2 based desiccants for solar crop drying applications, Renewable Energy. 19 (4) (2000)  513-520.

DOI: 10.1016/s0960-1481(99)00072-5

Google Scholar

[24] S. Pramuang, R. H. B. Exell, The regeneration of silica gel desiccant by air from a solar heater with a compound parabolic concentrator, Renewable Energy. 32 (2007)  173-182.

DOI: 10.1016/j.renene.2006.02.009

Google Scholar

[25] S. Pramuang, R. H. B. Exell, Transient test of a solar air heater with a compound parabolic concentrator, Renewable Energy. Vol. 30(5) (2005) 715-728.

DOI: 10.1016/j.renene.2004.01.013

Google Scholar

[26] Bouadila, Farhat, Kooli, Lazaar and Skouri, Performance of a new solar air heater with packed-bed latent storage energy for nocturnal use, Applied Energy. 110 (2013) 267–275.

DOI: 10.1016/j.apenergy.2013.04.062

Google Scholar

[27] K. A. Joudi, A. A. Farhan, Greenhouse heating by solar air heaters on the roof, Renewable Energy. 72(2014) 406-414.

DOI: 10.1016/j.renene.2014.07.025

Google Scholar

[28] G.N. Tiwari, Bhatia PS, Singih AK, Goyal RK, Analytical studies of crop drying cum water heating system, Energy Conversion Management. 38(8) (1997) 751–9.

DOI: 10.1016/s0196-8904(96)00083-0

Google Scholar

[29] N. Kumar, Sagar Agravat, Tilak Chavda, H.N. Mistry, Design and development of efficient multipurpose domestic solar cookers/dryers, Renewable Energy. 33 (2008) 2207–11.

DOI: 10.1016/j.renene.2008.01.010

Google Scholar

[30] C. Choudhury, H. P. Garg, Thermal performance of a solar hybrid domestic hot water system, Energy. 17(7) (1992) 703-711.

DOI: 10.1016/0360-5442(92)90078-e

Google Scholar

[31] A. S. Ramana, R. Venkatesh, V. Antony Aroul Raj, R. Velraj, Experimental investigation of the LHS system and comparison of the stratification performance with the SHS system using CFD simulation, Solar Energy. 13 (2014) 378– 389.

DOI: 10.1016/j.solener.2014.02.009

Google Scholar

[32] Mehling, H., Cabeza, L.F., Hippeli, S., Hiebler, S., PCM-module to improve hot water heat stores with stratification, Renewable Energy. 28 (2003) 699–711.

DOI: 10.1016/s0960-1481(02)00108-8

Google Scholar