Effect of Circular Fins on Latent Heat Storage to Enhance Solar Water Heater, an Experimental Study

Article Preview

Abstract:

In natural circulation solar water heating, the efficiency of energy storage and solar collector can be improved if the water tank is stratified. Employing Phase Change Material (PCM) in the top of the tank will improve the stratification of the energy storage tank. Current paper studies the use of circular fins around PCM geometry with high surface to volume ratio to improve the efficiency of solar water heater. Heating and cooling tests have been performed in a domestic water heater with flat plate collector under real working conditions. Eventually the temperature distribution along the height of the storage tank, charging energy efficiency, collector efficiency have been calculated and compared. Tests have been simulated in CFD software for validating results. Addition of circular fins around PCM produces up to 5% and 36.48% improvement in tank charging energy efficiency, collector efficiency respectively because of improved heat transfer between PCM and water.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

13-17

Citation:

Online since:

August 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Shukla, D. Buddin, R.L. Sawhney, Thermal cycling test of few selected inorganic and organic phase change materials, Renewable Energy. 33(2008) 2606-2614.

DOI: 10.1016/j.renene.2008.02.026

Google Scholar

[2] S. Canbazoglua, A. Sahinaslana, A. Ekmekyapar Y.G. Aksoya, F. Akarsua, Enhancement of solar thermal energy storage performance using sodium thiosulfate pentahydrate of a conventional solar water-heating system, Energy and Buildings. 37 (2005).

DOI: 10.1016/j.enbuild.2004.06.016

Google Scholar

[3] M.J. Huang, P.C. Eames, S. McCormack, P. Griffiths, N.J. Hewitt, Microencapsulated phase change slurries for thermal energy storage in a residential solar energy system, Renewable Energy. 36 (2011) 2932-2939.

DOI: 10.1016/j.renene.2011.04.004

Google Scholar

[4] S. Wu, G. Fang, Dynamic performances of solar heat storage system with packed bed using myristic acid as phase change material, Energy and Buildings. 43 (2011) 1091-1096.

DOI: 10.1016/j.enbuild.2010.08.029

Google Scholar

[5] S. Wu, G. Fang, X. Liu, Dynamic discharging characteristics simulation on solar heat storage system with spherical capsules using paraffin as heat storage material, Renewable Energy. 36 (2011) 1190-1195.

DOI: 10.1016/j.renene.2010.10.012

Google Scholar

[6] M. Mazman, L. F. Cabeza, H. Mehling, et al., utilization of phase change materials in solar domestic hot water systems, Renewable Energy. 34(2009)1639-1643.

DOI: 10.1016/j.renene.2008.10.016

Google Scholar

[7] A. Castell, C. Sole, M. Medrano, J. Roca, L. F. Cabeza, D. Garcıa, Natural convection heat transfer coefficients in phase change material (PCM) modules with external vertical fins, Applied Thermal Engineering. 28 (2008) 1676-1686.

DOI: 10.1016/j.applthermaleng.2007.11.004

Google Scholar

[8] A. F. Regin, S.C. Solanki, J.S. Saini, An analysis of a packed bed latent heat thermal energy storage system using PCM capsules: Numerical investigation, Renewable Energy. 34 (2009) 1765-1773.

DOI: 10.1016/j.renene.2008.12.012

Google Scholar

[9] E. Talmatsky, A. kribus, PCM storage for solar DHW: An unfulfilled promise?, Solar energy. 82(2008)861-869.

DOI: 10.1016/j.solener.2008.04.003

Google Scholar

[10] J. Bony, S. Citherlet, Numerical model and experimental validation of heat storage with phase change materials, Energy and Buildings. 39 (2007) 1065-1072.

DOI: 10.1016/j.enbuild.2006.10.017

Google Scholar

[11] J. Banaszek, R. Domanski, M. Rebow, F. El-Sagier, Experimental study of solid–liquid phase change in a spiral thermal energy storage unit, Applied Thermal Engineering. 19 (1999) 1253-1277.

DOI: 10.1016/s1359-4311(98)00120-3

Google Scholar

[12] N. Nallusamy, S. Sampath, R. Velraj, Experimental investigation on a combined sensible and latent heat storage system integrated with constant/varying (solar) heat sources, Renewable Energy. 32 (2007) 1206-1227.

DOI: 10.1016/j.renene.2006.04.015

Google Scholar

[13] Haller MY, Cruickshank C, Streicher W, Harrison SJ, Andersen E, FurboS. Methods to determine stratification efficiency of thermal storage processes–review and theoretical comparison, Solar Energy. 83 (2009) 1847-60.

DOI: 10.1016/j.solener.2009.06.019

Google Scholar