Fabrication of Core-Shell Structured TiO2/MgO Electrodes for Dye-Sensitized Solar Cells

Article Preview

Abstract:

We demonstrated the construction and performance of dye-sensitized solar cells (DSCs) based on nanoparticles of TiO2 coated with thin shells of MgO by simple solution growth technique. The XRD patterns confirm the presence of both TiO2 and MgO in the core-shell structure. The effect of varied shell thickness on the photovoltaic performance of the core-shell structured electrode is also investigated. We found that MgO shells of all thicknesses perform as barriers that improve open-circuit voltage (Voc) of the DSCs only at the expense of a larger decrease in short-circuit current density (Jsc). The energy conversion efficiency was greatly dependent on the thickness of MgO on TiO2 film, and the highest efficiency of 4.1% was achieved at the optimum MgO shell layer.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-7

Citation:

Online since:

August 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. Okada, S. Karuppuchamy, M. Kurihara, An Efficient Dye-sensitized Photoelectrochemical Solar Cell Made from CaCO3-coated TiO2 Nanoporous Film, Chem. Let. 34 (2005) 16-17.

DOI: 10.1246/cl.2005.16

Google Scholar

[2] S. Y. Huang, G. Schlichtho1rl, A. J. Nozik, M. Gra1tzel, A. J. Frank, Charge Recombination in Dye-Sensitized Nanocrystalline TiO2 Solar Cells, J. Phys. Chem. B 101 (1997) 2576-2582.

DOI: 10.1021/jp962377q

Google Scholar

[3] B. O'Regan, M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature. 353 (1991) 737–740.

DOI: 10.1038/353737a0

Google Scholar

[4] M.K. Nazeeruddin, A. Kay, I. Rodicio, B.R. Humphry, E. Mueller, N. Vlachopolous, M. Gratzel, J. Am. Chem. Soc. 115 (1993) 6382-6390.

Google Scholar

[5] Na Li, N. Pan, D. Li, S. Lin, Natural Dye-Sensitized Solar Cells Based on Highly Ordered TiO2 Nanotube Arrays, Int. J. Photoenergy. 2013 (2013) 1-5.

DOI: 10.1155/2013/598753

Google Scholar

[6] M. Gra1tzel, Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells, Inorg. Chem. 44 (2005) 6841−6851.

DOI: 10.1021/ic0508371

Google Scholar

[7] K. Keis, E. Magnusson, H. Lindstrom, S. E. Lindquist, A. Hagfeldt, A 5% efficient photoelectrochemical solar cell based on nanostructured ZnO electrodes, Sol. Energy Mater. Sol. Cells. 73 (2002) 51-58.

DOI: 10.1016/s0927-0248(01)00110-6

Google Scholar

[8] S. Karuppuchamy, K. Nonomura, T. Yoshida, T. Sugiura, H. Minoura, Cathodic electrodeposition of oxide semiconductor thin films and their application to dye-sensitized solar cells, Solid State Ionics. 151 (2002) 19 - 27.

DOI: 10.1016/s0167-2738(02)00599-4

Google Scholar

[9] S. Karuppuchamy, D. P. Amalnerkar, K. Yamaguchi, T. Yoshida, T. Sugiura, H. Minoura, Cathodic Electrodeposition of TiO2 Thin Films for Dye-Sensitized Photoelectrochemical Applications, Chemistry Letters. (2001) 78-79.

DOI: 10.1246/cl.2001.78

Google Scholar

[10] M. Kaur, N. K. Verma, CaCO3/TiO2 Nanoparticles Based Dye Sensitized Solar Cell, J. Mater. Sci. Technol. (2013) 1-7.

Google Scholar

[11] S. Karuppuchamy, N. Suzuki, S. Ito, T. Endo, A novel one-step electrochemical method to obtain crystalline titanium dioxide films at low-temperature, Curr. Appl. Phys. 9(2009)243-248.

DOI: 10.1016/j.cap.2008.02.004

Google Scholar

[12] S. Karuppuchamy, Y. Andou, T. Endo, Preparation of Nanostructured TiO2 for Flexible Dye-sensitized Solar Cell Applications, Appl. Nanosci. 3 (2013) 291-293.

DOI: 10.1007/s13204-012-0140-6

Google Scholar