Upshot of Ultrasonic Amplitude on Developing the AA6061/SiC Metal Matrix Nanocomposites

Article Preview

Abstract:

In this work, AA6061/1.25 vol. % SiCp metal matrix nanocomposites (MMNCs) were fabricated using the ultrasonic cavitation assisted casting process. To investigate the effect of ultrasonic amplitudes on processing the MMNCs, the MMNC samples were processed with 15 µm, 30 µm and 50 µm of ultrasonic amplitudes. The results indicate that the ultrasonic amplitudes play a significant role in dispersing the SiC nanoparticles uniformly in the AA6061 melt and it also affecting the mechanical properties of the fabricated MMNCs. The AA6061/1.25 vol. % SiCp MMNC sample processed with 30 µm of ultrasonic amplitude possessed the good dispersion of SiCp in the Al melt and hence better mechanical properties compared to the MMNCs processed with 15 µm and 50 µm amplitudes.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

558-562

Citation:

Online since:

August 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Yong, L. Jie, L. Xiaochun, Study on bulk aluminum matrix nano-composite fabricated by ultrasonic dispersion of nano-sized SiC particles in molten aluminum alloy, Mat. Sci. Eng A. 380 (2004) 378-383.

DOI: 10.1016/j.msea.2004.03.073

Google Scholar

[2] Y. Yong, L. Xiaochun, Ultrasonic cavitation based manufacturing of bulk Al matrix nanocomposites, J. Manu. Sci. E. 129 (2007) 497-501.

Google Scholar

[3] Y. Yong, L. Xiaochun, An experimental determination of optimum processing parameters for Al/SiC metal matrix composites made using ultrasonic consolidation, J. Eng. Mater. Tech. 129 (2007) 538-549.

DOI: 10.1115/1.2744431

Google Scholar

[4] T. Hielscher, Ultrasonic production of nano-size dispersions and emulsions, ENS'05 (2005), www. hielscher. com.

Google Scholar

[5] G. I. Eskin, Cavitation mechanism of ultrasonic melt degassing, Ultrason. Sonochem. 2 (1995) 137-141.

Google Scholar

[6] G. I. Eskin, Ultrasonic treatment of light alloy melts, Gordon & Breach Science Publishers (1998).

Google Scholar

[7] H. Puga, J. Barbosa, E. Seabra, S. Riberio, M. Prokic, The influence of processing parameters on the ultrasonic degassing of molten AlSi9Cu3 aluminium alloy, Mater. Let. 63 (2009) 806-808.

DOI: 10.1016/j.matlet.2009.01.009

Google Scholar

[8] L. Zhang, D. G. Eskin, L. Katgerman, Influence of ultrasonic melt treatment on the formation of primary intermetallics and related grain refinement in aluminum alloys, J. Mater. Sci. 46 (2011) 5252–5259.

DOI: 10.1007/s10853-011-5463-2

Google Scholar

[9] M. Hugo, C. Santos, J. Lodeiro Jos, e-Luis, Capelo-Martrnez, The power of ultrasound, Ultrasound in Chemistry: Analytical Applications, WILEY-VCH Verlag Gmbh (2009).

Google Scholar

[10] R. Anthony, Q. Ma, Ultrasonic grain refinement of magnesium and its alloys, InTec, Available from: <http: /www. intechopen. com/books/magnesium-alloys-design-processing-and properties> (2011).

DOI: 10.5772/12958

Google Scholar