Fracture Mechanism of Thermomechanically Processed Low-Carbon Steel

Article Preview

Abstract:

The article deals with the fracture mechanism of thermomechanically processed low-carbon steel tested at low temperatures The low temperature impact toughness of the low-carbon Fe360 steel was defined in the initial (as delivered) state and after its combined treatment: quenching and equal channel angular pressing (ECAP) as well as quenching, equal channel angular pressing, and annealing. It was stated that the combination of quenching and the equal channel angular pressing provided higher strength and led to increased resistance to brittle fracture. Post-deformation annealing, due to high ductility of the material, allows for higher values of impact toughness and power intensity of fracture.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

182-186

Citation:

Online since:

August 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V.M. Segal, V.I. Reznikov, V.I. Kopy'lov, D.A. Pavlik and V.F. Maly'shev, A plastic formation of metals, Navuka i te`hnika «Publ. », Minsk, (1994).

Google Scholar

[2] R.Z. Valiev, I.V. Aleksandrov, Bulk nanostructured metallic materials: synthesis, structure and properties, Akademkniga «Publ. », Moscow, (2007).

Google Scholar

[3] A.M. Ivanov, The effectiveness of combining thermoplastic processing methods of steels, Fundamental'ny'e i prikladny'e problemy' tehniki i tehnologii «Publ. ». 2-4 (2012) 25-33.

Google Scholar

[4] V.S. Zolotorevskiy, Mechanical properties of metals, Metallurgiya «Publ. », Moscow, (1983).

Google Scholar

[5] L.R. Botvina, Destruction: kinetics, mechanisms, general laws, Nauka «Publ. », Moscow, (2008).

Google Scholar

[6] S.V. Dobatkin, P.D. Odesskiy, O.I. Slepcov, G.I. Raab, S.P. Yakovleva and S.V. Shagalina, The mechanical properties of submicrocrystalline steel 09G2S after ECA-pressing, Moskovskiy institute stali I splavov «Publ. ». (2004) 143.

Google Scholar

[7] G.I. Raab, A.M. Ivanov, D.V. Gunderov, P.P. Petrov, E.S. Lukin, N.D. Petrova, A.A. Platonov and R.Z. Valiev, The increase in strength and cold resistance of structural steels intensive plastic deformation and heat treatment, Institut himii tverdogo tela I mehanohimii «Publ. ». (2007).

Google Scholar

[8] G.V. Klevcov, R.Z. Valiev, G.I. Raab, N.A. Klevcova, M.V. Fesenyuk and M.R. Kashapov, The impact fracture mechanism 10 steel with submicrocrystalline structure in the range of ductile-brittle transition, Deformaciya i razrushenie materialov «Publ. ». 8 (2011).

Google Scholar

[9] A.M. Ivanov, A.S. Sy'romyatnikova and N.D. Petrova, Hardening of intensive plastic deformation and fracture of constructional steel, Uprochnyayusch'ie tehnologii i pokry'tiya «Publ. ». 3 (2012) 39-42.

Google Scholar

[10] V.E. Panin, L.S. Derevyagina, N.M. Lemeshev, A.V. Korznikov, A.V. Panin, M.S. Kazachenok, About nature of low-temperature steels embrittlement with BCC-structure, Fizicheskaya mezomehanika «Publ. ». 6 (2013) 5-12.

DOI: 10.1134/s1029959914020015

Google Scholar