[1]
S.C. Deevi, V. K. Sikka, Nickel and iron alumunides: an overview on properties, processing, and applications, Intermetallics. 4 (1996) 357-375.
DOI: 10.1016/0966-9795(95)00056-9
Google Scholar
[2]
A.V. Kartavykh, S.D. Kaloshkin, V.V. Cherdyntsev, M.V. Gorshenkov, T.A. Sviridova, Yu.V. Borisova, F.S. Senatov, A.V. Maksimkin, Application of microstructured intermetallides in turbine manufacture. Part 1: Present state and prospects, Inorg. Mater. Appl. Res. 4 (2013).
DOI: 10.1134/s207511331301005x
Google Scholar
[3]
G. Sauthoff, Intermetallics. Weinheim, Germany: VCH Publishers, (1995).
Google Scholar
[4]
F. Zhang, L. Lu, M. O. Lai, and F. H. S. Froes, Grain growth and recrystallization of nanocrystalline Al3Ti prepared by mechanical alloying, J. Mater. Sci. 38 (2003) 613-619.
Google Scholar
[5]
Y. Umakoshi, M. Yamaguchi, T. Sakagami, T. Yamane, Oxidation resistance of intermetallic compounds Al3Ti and TiAl, J. Mater. Sci. 24 (1989) 1599-1603.
DOI: 10.1007/bf01105677
Google Scholar
[6]
M.R. Farhang, A.R. Kamali, M. Nazarian-Samani, Effects of mechanical alloying on the characteristics of a nanocrystallineTi–50 at. %Al during hot pressing consolidation, Mater. Sci. Eng. B. 168 (2010) 136–141.
DOI: 10.1016/j.mseb.2009.10.032
Google Scholar
[7]
B. Mei, Y. Miyamoto, Preparation of Ti-Al intermetallic compounds by spark plasma sintering, Metall. Mater. Trans. A. 32 (13) (2001) 843-847.
DOI: 10.1007/s11661-001-0101-2
Google Scholar
[8]
Y.Y. Chena, H.B. Yua, D.L. Zhangb, L.H. Chaia, Effect of spark plasma sintering temperature on microstructure and mechanical properties of an ultrafine grained TiAl intermetallic alloy, Mater. Sci. Eng. A. 525 (2009) 166–173.
DOI: 10.1016/j.msea.2009.06.056
Google Scholar
[9]
Y. Sun, K. Kulkarni, A.K. Sachdev, E. J. Lavernia. Synthesis of c-TiAl by Reactive Spark Plasma Sintering of Cryomilled Ti and Al Powder Blend, Part I: Influence of Processing and Microstructural Evolution, Metall. Mater. Trans. A. 45 (6) (2014).
DOI: 10.1007/s11661-014-2215-3
Google Scholar
[10]
Y. Sun, K. Kulkarni, A.K. Sachdev, E.J. Lavernia, Synthesis of c-TiAl by Reactive Spark Plasma Sintering of Cryomilled Ti and Al Powder Blend: Part II: Effects of Electric Field and Microstructure on Sintering Kinetics, Metall. Mater. Trans. A. 45 (6) (2014).
DOI: 10.1007/s11661-014-2216-2
Google Scholar
[11]
M. Tokita, Mechanism of spark plasma sintering, J. Powder Technol. 30 (11) (1993) 790–804.
Google Scholar
[12]
M. Sujata, S. Bhargava, S. Sangal, On the formation of TiAl3 during reaction between solid Ti and liquid Al, J. Mater. Sci. Lett. 16 (1997) 1175–1178.
DOI: 10.1007/bf02765402
Google Scholar
[13]
F. Zhang, S.L. Chen, Y.A. Chang, U.R. Kattner, A thermodynamic description of the Ti-Al system, Intermetallics. 5 (1997) 471-482.
DOI: 10.1016/s0966-9795(97)00030-7
Google Scholar
[14]
H. Suzuki, Ya. Yamabayashi, A. Nozue, T. Okubo, Microstucture and mechanical properties of reactive sintered intermetallic compound Al3Ti fabricated by hot-pressing method, Journal of Japan Institute of Light Metals. 44 (11) (1994) 641-645.
DOI: 10.2464/jilm.44.641
Google Scholar
[15]
D.V. Lazurenko, V.I. Mali, A.G. Anisimov, P.S. Yartsev, D.I. Lagereva, L.I. Shevtsova, The structural particularities of multilayered metal-intermetallic composites fabricated by the spark plasma sintering technology, Advanced Materials Research. 1040 (2014).
DOI: 10.4028/www.scientific.net/amr.1040.800
Google Scholar