Effect of Plastic Deformation of the Initial Components and Particle Size Reduction on the Structure and Properties of the PN85YU15-Ni Composite Material Produced by Spark Plasma Sintering

Article Preview

Abstract:

Structure and mechanical properties of the PN85YU15 - Ni composite materials obtained by spark plasma sintering were investigated. Two types of powder mixtures, namely, nickel mixed with coarse-grained nickel aluminide and nickel mixed with fine-grained nickel aluminide were used to obtain the composites. Nickel aluminide and nickel powders were taken in the ratio 7:3 respectively. The effect of the initial nickel aluminide particle sizes and plastic deformation due to the ball milling on the structure and mechanical properties of materials sintered at 1100 °C and pressure of 40 MPa was determined. Plastic deformation and refining the initial intermetallic powder particle sizes leads to increasing the sintered material relative density to 95%. The tensile strength of the PN85YU15-Ni composite material obtained by sintering of the milled PN85YU15 powder and nickel in the ratio 7:3 was 1060 MPa. This value is almost twice as high as the tensile strength of the composite containing a no significant plastic deformed coarse-grained intermetallic compound powder (590 MPa), and three times higher than the tensile strength of the sintered nickel aluminide powder (380 MPa).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

151-156

Citation:

Online since:

August 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S.C. Deevi, V.K. Sikka, Nickel and iron aluminides: an overview on properties, processing, and applications, Intermetallics. 4 (1996) 357–375.

DOI: 10.1016/0966-9795(95)00056-9

Google Scholar

[2] N.S. Stoloff, C.T. Liu, S.C. Deevi, Emerging applications of intermetallics, Intermetallics. 8 (2000) 1313–1320.

DOI: 10.1016/s0966-9795(00)00077-7

Google Scholar

[3] O. Noguchi, Y. Oya, T. Suzuki, The effect of nonstoichiometry on the positive temperature dependence strength of Ni3Al and Ni3Ga, Metall. Trans., A. 12 A (1981) 1647-1653.

DOI: 10.1007/bf02643570

Google Scholar

[4] I.A. Astapov, K.P. Eremina, M.A. Teslina, S.N. Khimukhin, V.V. Gostishchev, Structure and properties of functional coatings produced by electrospark deposition of a steel 20X13, Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty). 4(61) (2013).

Google Scholar

[5] L.Y. Sheng, W. Zhang, J.T. Guo, Z.S. Wang, V.E. Ovcharenko, L.Z. Zhou, H.Q. Ye, Microstructure and mechanical properties of Ni3Al fabricated by thermal explosion and hot extrusion, Intermetallics. 17 (2009) 572-577.

DOI: 10.1016/j.intermet.2009.01.004

Google Scholar

[6] V. Yu. Filimonov, M.A. Korchagin, N.Z. Lyakhov, Kinetics of mechanically activated high temperature synthesis of Ni3Al in the thermal explosion mode, Intermetallics. 19 (2011) 833-840.

DOI: 10.1016/j.intermet.2010.11.028

Google Scholar

[7] V.I. Mali, D.V. Pavliukova, I.A. Bataev, A.A. Bataev, A.I. Smirnov, P.S. Yartsev, V.V. Bazarkina, Formation of the intermetallic layers in Ti-Al multilayer composites, Adv. Mater. Res. 311 – 313 (2011) 236-239.

DOI: 10.4028/www.scientific.net/amr.311-313.236

Google Scholar

[8] B.A. Kolachev, V.I. Elagin, V.A. Livanov, Metallovedenie i termicheskaya obrabotka cvetnich metallov i splavov, Moscow, (1999).

Google Scholar

[9] Z. Munir, U. Tamburini, M. Ohyanagi, The effect of electric field and pressure on the synthesis and consolidation of materials: a review of the spark plasma sintering method, J. Mater. Sci. 41 (3) (2006) 763–777.

DOI: 10.1007/s10853-006-6555-2

Google Scholar

[10] R. Orrù, R. Licheri, A.M. Locci, A. Cincotti, G. Cao, Consolidation/synthesis of materials by electric current activated/assisted sintering, Mater. Sci. Eng. 63 (4–6) (2009) 127–287.

DOI: 10.1016/j.mser.2008.09.003

Google Scholar

[11] N. Saheb, Z. Iqbal, A. Khalil, A. Hakeem, N. Aqeeli, T. Laoui, A. Al-Qutub, R. Kirchner, Spark Plasma Sintering of Metals and Metal Matrix Nanocomposites: A Review. J. Nanomater. 1 (2012) 13.

DOI: 10.1155/2012/983470

Google Scholar

[12] D. Hulbert, D. Jiang, D. Dudina, A. Mukherjee, The synthesis and consolidation of hard materials by spark plasma sintering, Int. J. Refract. Met. Hard Mater. 27(2) (2009) 367-375.

DOI: 10.1016/j.ijrmhm.2008.09.011

Google Scholar

[13] L.I. Shevtsova, M.A. Korchagin, A. Thommes, V.I. Mali, A.G. Anisimov, S. Yu. Nagavkin, Spark plasma sintering of mechanically activated Ni and Al powders, Adv. Mater. Res. 1040 (2014) 772-777.

DOI: 10.4028/www.scientific.net/amr.1040.772

Google Scholar

[14] J.S. Kim, H. S. Choi, D. Dudina, J.K. Lee, Y.S. Kwon, Spark Plasma Sintering of nanoscale (Ni+Al) powder mixture, Solid State Phenomena. 119 (2007) 35-38.

DOI: 10.4028/www.scientific.net/ssp.119.35

Google Scholar

[15] L.I. Shevtsova, V.I. Mali, A.A. Bataev, I.A. Bataev, D.S. Terent'ev, V.S. Lozhkin, Structure and properties of composite materials aluminum-nickel aluminide, produced by the SPS method, The 8 international forum on strategic technologies. 1 (2013).

Google Scholar

[16] L.I. Shevtsova, I.A. Bataev, V.I. Mali, A.G. Anisimov, D.V. Lazurenko, T.S. Sameyshcheva, Influence of heat temperature on the structure and mechanical properties of the material fabricated by spark plasma sintering of the PN85U15 powder, Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty). 4(61) (2013).

Google Scholar

[17] L.I. Shevtsova, Structure and mechanical properties of Ni3Al intermetallic, fabricated by spark plasma sintering of mechanically activated «Ni - Al» powder mixtures, Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty). 3(64) (2014).

Google Scholar