[1]
M. Roy, Surface Engineering for Enhanced Performance against Wear, Springer, Wien, (2013).
Google Scholar
[2]
J.A. Sprague, F.A. Smidt, Jr., Thermal Spray Coatings, in: C.M. Cotell (Ed. ), ASM Handbook, Volume 5: Surface Engineering, ASM Int., 1994, p.497–509.
Google Scholar
[3]
J. R. Davis, Handbook of thermal spray technology, ASM International, Ohio, (2004).
Google Scholar
[4]
B. Wielage, T. Lampke, T. Grund, Thermal spraying of wear and corrosion resistant surfaces, K. Eng. Mater. 384 (2008) 75–98.
DOI: 10.4028/www.scientific.net/kem.384.75
Google Scholar
[5]
Š. Houdková, O. Bláhová, R. Enžl, P. Tichotová, K. Novotná, Tribological Characteristics of Thermally Sprayed Coatings, Trib. Surf. L. Coat., Proc. 4th Int. Trib. Conf. (2004) 1–8.
Google Scholar
[6]
M. Pasandideh-Fard, V. Pershin, S. Chandra, J. Mostaghimi, Splat Shapes in a Thermal Spray Coating Process: Simulations and Experiments, J. Therm. Spr. Tech. 11 (2002) 206–217.
DOI: 10.1361/105996302770348862
Google Scholar
[7]
V. Rajinikanth, K. Venkateswarlu, An investigation of sliding wear behaviour of WC–Co coating, Trib. Int. 44 (2011) 1711–1719.
DOI: 10.1016/j.triboint.2011.06.021
Google Scholar
[8]
Y.Y. Santana, P.O. Renault, M. Sebastiani, J.G. La Barbera, J. Lesage, E. Bemporad, E. Le Bourhis, E.S. Puchi-Cabrera, M.H. Staia, Characterization and residual stresses of WC–Co thermally sprayed coatings, Surf. Coat. Tech. 202 (2008) 4560–4565.
DOI: 10.1016/j.surfcoat.2008.04.042
Google Scholar
[9]
Q. Yang, T. Senda, A. Ohmori, Effect of carbide grain size on microstructure and sliding wear behavior of HVOF-sprayed WC–12% Co coatings, Wear 254 (2003) 23–34.
DOI: 10.1016/s0043-1648(02)00294-6
Google Scholar
[10]
J. Yuan, Q. Zhan, J. Huang, S. Ding, H. Li, Decarburization mechanisms of WC-Co during thermal spraying: Insights from controlled carbon loss and microstructure characterization, Mat. Chem. Phys. 142 (2013) 165–171.
DOI: 10.1016/j.matchemphys.2013.06.052
Google Scholar
[11]
D.A. Stewart, P.H. Shipway, D.G. McCartney, Abrasive wear behaviour of conventional and nanocomposite HVOF-sprayed WC-Co coatings, Wear 225 (1999) 789–798.
DOI: 10.1016/s0043-1648(99)00032-0
Google Scholar
[12]
L. Jacobs, M.M. Hyland, M. De Bonte, Study of the Influence of Microstructural Properties on the Sliding-Wear Behavior of HVOF and HVAF Sprayed WC-Cermet Coatings, J. Therm. Spr. Tech. 8 (1999) 125.
DOI: 10.1361/105996399770350656
Google Scholar
[13]
P.H. Shipway, D.G. McCartney, T. Sudaprasert, Sliding wear behaviour of conventional and nanostructured HVOF sprayed WC–Co coatings, Wear 259 (2005) 820–827.
DOI: 10.1016/j.wear.2005.02.059
Google Scholar
[14]
J.A. Picas, Y. Xiong, M. Punset, L. Ajdelsztajn, A. Forn, J.M. Schoenung, Microstructure and wear resistance of WC–Co by three consolidation processing techniques, Int. J. Ref. Met. Hard Mat. 27 (2009) 344–349.
DOI: 10.1016/j.ijrmhm.2008.07.002
Google Scholar
[15]
L.M. Berger, S. Saaro, T. Naumann, M. Wiener, V. Weihnacht, S. Thiele, et al. Microstructure and properties of HVOF-sprayed chromium alloyed WC-Co and WC-Ni coatings, Surf. Coat. Technol. (2008) 4417–21.
DOI: 10.1016/j.surfcoat.2008.04.019
Google Scholar