[1]
G. Lütjering, J. C. Williams, Titanium (Engineering Materials and Processes), second ed., Springer, (2007).
Google Scholar
[2]
C. Leyens, M. Peters, Titanium and Titanium Alloys: Fundamentals and Applications, Wiley-vch, (2003).
Google Scholar
[3]
J. Matthew, Jr. Donachie, Titanium: A Technical Guide, second ed., ASM International, (2000).
Google Scholar
[4]
W. Sha, S Malinov, Titanium alloys: modelling of structure, properties and applications, Woodhead Publishing Limited, (2009).
Google Scholar
[5]
B. Raj, U. K. Mudali, Materials development and corrosion problems in nuclear fuel reprocessing plants, Progress in Nuclear Energy. 48 (2006) 283-313.
DOI: 10.1016/j.pnucene.2005.07.001
Google Scholar
[6]
Y. L. Zhou, M. Niinomi, T. Akahori, H. Fukui, H. Toda, Corrosion resistance and biocompatibility of Ti-Ta alloys for biomedical applications, Mater. Sci. Eng., A. 398 (2005) 28-36.
DOI: 10.1016/j.msea.2005.03.032
Google Scholar
[7]
P. Y. Park, E. Akiyama, H. Habazaki, A. Kawashima, K. Asami, K. Hashimoto, The corrosion behavior of sputter-deposited Mo-Ti alloys in concentrated hydrochloric acid, Corros. Sci. 38 (1996) 1649-1667.
DOI: 10.1016/s0010-938x(96)00041-8
Google Scholar
[8]
R. Godley, D. Starosvetsky, I. Gotman, Corrosion behavior of a low modulus β-Ti-45%Nb alloy for use in medical implants, J. Mater. Sci.: Mater. Med. 17 (2006) 63-67.
DOI: 10.1007/s10856-006-6330-6
Google Scholar
[9]
K. A. de Souza, A. Robin Influence of concentration and temperature on the corrosion behavior of titanium, titanium-20 and 40% tantalum alloys and tantalum in sulfuric acid solutions, Mater. Chem. Phys. 103 (2007) 351-360.
DOI: 10.1016/j.matchemphys.2007.02.026
Google Scholar
[10]
K. A. de Souza, A. Robin, Preparation and characterization of Ti-Ta alloys for application in corrosive media, Mater. Lett. 57 (2003) 3010-3016.
DOI: 10.1016/s0167-577x(02)01422-2
Google Scholar
[11]
T. Balusamy, M. Jamesh, S. Kumar, T. S. N. S. Narayanan, Corrosion resistance Ti alloy for sulphuric acid medium: Suitability of Ti-Mo alloys, Mater. Corros. 63 (2012) 803-806.
DOI: 10.1002/maco.201106275
Google Scholar
[12]
N. D. Tomashov, Titan i korrozionnostoykie splavyi na ego osnove, Metallurgiya, 1985. [in Russian].
Google Scholar
[13]
A. Cremasco, W. R. Osorio, C. M. A. Freire, A. Garcia, R. Caram, Electrochemical corrosion behavior of a Ti-35Nb alloy for medical prostheses, Electrochim. Acta. 53 (2008) 4867-4874.
DOI: 10.1016/j.electacta.2008.02.011
Google Scholar
[14]
Y. J. Bai, Y. B. Wang, Y. Cheng, F. Deng, Y. F. Zheng, S. C. Wei, Comparative study on the corrosion behavior of Ti-Nb and TMA alloys for dental application in various artificial solutions, Mater. Sci. Eng., C. 31 (2011) 702-711.
DOI: 10.1016/j.msec.2010.12.010
Google Scholar
[15]
M. Bönisch, M. Calin, T. Waitz, A. Panigrahi, M. Zehetbauer, A. Gebert, W. Skrotzki, J. Eckert, Thermal stability and phase transformation of martensitic Ti-Nb alloys, Science and Technology of Advanced Materials. 14 (2013) 055004.
DOI: 10.1088/1468-6996/14/5/055004
Google Scholar
[16]
V. Fallah, S. F. Corbin, A. Khajepour, Process optimization of Ti-Nb alloy coatings on a Ti-6Al-4V plate using a fiber laser and blended elemental powders, Journal of Materials Processing Technology. 210 (2012) 2081-(2087).
DOI: 10.1016/j.jmatprotec.2010.07.030
Google Scholar
[17]
I. A. Bataev, A. A. Bataev, M. G. Golkovsky, A. Yu. Teplykh, V. G. Burov, S. V. Veselov, Non-vacuum electron-beam boriding of low-carbon steel, Surf. Coat. Technol. 207 (2012) 245-253.
DOI: 10.1016/j.surfcoat.2012.06.081
Google Scholar
[18]
O. Lenivtseva, E. Golovin, V. Samoylenko, D. Mul, D. Golovin, Structure and properties of surface layers obtained by atmospheric electron beam cladding of graphite-titanium powder mixture onto titanium substrate, Advanced Materials Research. 1040 (2014).
DOI: 10.4028/www.scientific.net/amr.1040.784
Google Scholar
[19]
M. G. Golkovski, I. A. Bataev, A. A. Bataev, A. A. Ruktuev, T. V. Zhuravina, N. K. Kuksanov, R. A. Salimov, V. A. Bataev, Atmospheric electron-beam surface alloying of titanium with tantalum, Mater. Sci. Eng., A. 578 (2013) 310-317.
DOI: 10.1016/j.msea.2013.04.103
Google Scholar
[20]
A. Ruktuev, M. Golkovski, V. Samoylenko, P. Komarov, I. Bataev, A. Bataev, Corrosion resistance of multilayer Ti-Ta coatings obtained by electron beam cladding in the atmosphere, Advanced Materials Research. 1040 (2014) 759-763.
DOI: 10.4028/www.scientific.net/amr.1040.759
Google Scholar
[21]
A. A. Ruktuev, V. V. Samoylenko, M. G. Golkovski, Structure and corrosion resistance of Ti-Ta-Nb coatings obtained by electron beam cladding in the air-atmosphere, Advanced Materials Research. 682 (2014) 100-103.
DOI: 10.4028/www.scientific.net/amm.682.100
Google Scholar
[22]
S. N. Fadeev, M. G. Golkovski, A. I. Korchagin, N. K. Kuksanov, A. V. Lavruhin, S. E. Petrov, R. A. Salimov, A. F. Vaisman, Technological applications of BINP industrial electron accelerators with focused beam extracted into atmosphere, Radiation Physics and Chemistry. 57 (2000).
DOI: 10.1016/s0969-806x(99)00499-5
Google Scholar